Modelos de previsión de energía solar con Python

Autores/as

DOI:

https://doi.org/10.33448/rsd-v13i8.46500

Palabras clave:

Modelización; NASA; Inteligencia artificial; Support vector machine; Redes neuronales artificiales.

Resumen

El principal objetivo de este estudio es proporcionar un marco claro y sistemático para la recogida de datos, la preparación, la modelización, la evaluación y el análisis de los resultados obtenidos. Incluir Este estudio explora el potencial de los modelos de inteligencia artificial (IA) para predecir la radiación solar en Belém-PA, con vistas a optimizar la generación de energía solar en la región. Analizando datos del satélite POWER de la NASA (2024), se implementaron y evaluaron varios modelos de regresión, incluyendo Random Forest, Support Vector Machine (SVM), Artificial Neural Network (ANN), Gradient Boosting Tree (GBT), Multivariate Adaptive Regression Spline (MARS) y Classification and Regression Tree (CART). Los resultados muestran que Random Forest destaca en términos de precisión media, mientras que MARS y GBT son más robustos a la hora de generalizar los datos. La validación cruzada y el análisis de métricas como RMSE y MBE demuestran la importancia de evaluar la fiabilidad de los modelos. Sin embargo, el rendimiento anómalo de CART, con un RMSE de 0,0 en ambas evaluaciones, requiere una investigación para verificar la existencia de sobreajuste. En resumen, este estudio destaca el potencial de los modelos de IA para predecir la radiación solar en Belém-PA, presentándose Random Forest, MARS y GBT como modelos prometedores para aplicaciones de predicción de energía solar. Cabe destacar la necesidad de una validación cruzada más exhaustiva y la investigación del rendimiento de CART para garantizar la robustez y fiabilidad de los resultados, impulsando la optimización de la generación de energía solar en la región.

Citas

Alkahtani, H., Aldhyani, T. H. H., & Alsubari, S. N. (2023). Application of Artificial Intelligence Model Solar Radiation Prediction for Renewable Energy Systems. Sustainability, 15(8), 6973. https://doi.org/10.3390/su15086973

Alizamir, M., Kim, S., Kisi, O., & Zounemat-Kermani, M. (2020). A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions. Energy, 197, 117239. https://doi.org/10.1016/j.energy.2020.117239

Alizamir, M., Shiri, J., Fard, A. F., Kim, S., Gorgij, A. D., Heddam, S., & Singh, V. P. (2023). Improving the accuracy of daily solar radiation prediction by climatic data using an efficient hybrid deep learning model: Long short-term memory (LSTM) network coupled with wavelet transform. Engineering Applications of Artificial Intelligence, 123, 106199. https://doi.org/10.1016/j.engappai.2023.106199

Chen, Y., Bai, M., Zhang, Y., Liu, J., & Yu, D. (2023). Proactively selection of input variables based on information gain factors for deep learning models in short-term solar irradiance forecasting. Energy, 284, 129261. https://doi.org/10.1016/j.energy.2023.129261

Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X., Lu, X., & Xiang, Y. (2018). Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Conversion and Management, 164, 102–111. https://doi.org/10.1016/j.enconman.2018.02.087

Feng, Y., Cui, N., Zhang, Q., Zhao, L., & Gong, D. (2017). Comparison of artificial intelligence and empirical models for estimation of daily diffuse solar radiation in North China Plain. 42(21), 14418–14428. https://doi.org/10.1016/j.ijhydene.2017.04.084

Gil, A. A. C. (2010). Como elaborar projetos de pesquisa. Éditeur: São Paulo: Atlas.

Gürel, A. E., Ağbulut, Ü., Bakır, H., Ergün, A., & Yıldız, G. (2023). A state of art review on estimation of solar radiation with various models. Heliyon, e13167. https://doi.org/10.1016/j.heliyon.2023.e13167

Hedar, A.-R., Almaraashi, M., Abdel-Hakim, A. E., & Abdulrahim, M. (2021). Hybrid Machine Learning for Solar Radiation Prediction in Reduced Feature Spaces. Energies, 14(23), 7970. https://doi.org/10.3390/en14237970

Huang, J., & Liu, H. (2021). A hybrid decomposition-boosting model for short-term multi-step solar radiation forecasting with NARX neural network. Journal of Central South University, 28(2), 507–526. https://doi.org/10.1007/s11771-021-4618-9

Köche, J. C. (1997) Fundamentos de metodologia científica: teoria da ciência e iniciação à pesquisa. Vozes

Khosravi, A., Koury, R. N. N., Machado, L., & Pabon, J. J. G. (2018 a). Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms. Journal of Cleaner Production, 176, 63–75. https://doi.org/10.1016/j.jclepro.2017.12.065

Khosravi, A., Nunes, R. O., Assad, M. E. H., & Machado, L. (2018 b). Comparison of artificial intelligence methods in estimation of daily global solar radiation. Journal of Cleaner Production, 194, 342–358. https://doi.org/10.1016/j.jclepro.2018.05.147

Khosravi, A., Syri, S., Pabon, J. J. G., Sandoval, O. R., Caetano, B. C., & Barrientos, M. H. (2019). Energy modeling of a solar dish/Stirling by artificial intelligence approach. Energy Conversion and Management, 199, 112021. https://doi.org/10.1016/j.enconman.2019.112021

Kosovic, I. N., Mastelic, T., & Ivankovic, D. (2020). Using Artificial Intelligence on environmental data from Internet of Things for estimating solar radiation: Comprehensive analysis. Journal of Cleaner Production, 266, 121489. https://doi.org/10.1016/j.jclepro.2020.121489

NASA. (2024). NASA POWER | Prediction Of Worldwide Energy Resources. Nasa.gov. https://power.larc.nasa.gov/

Olatomiwa, L., Mekhilef, S., Shamshirband, S., Mohammadi, K., Petković, D., & Sudheer, C. (2015). A support vector machine–firefly algorithm-based model for global solar radiation prediction. Solar Energy, 115, 632–644. https://doi.org/10.1016/j.solener.2015.03.015

Rajasundrapandiyanleebanon, T., Kumaresan, K., Murugan, S., Subathra, M. S. P., & Sivakumar, M. (2023). Solar Energy Forecasting Using Machine Learning and Deep Learning Techniques. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-023-09893-1

Seyyed Mohammad Mousavi, Elham Sadat Mostafavi, & Jiao, P. (2017). Next generation prediction model for daily solar radiation on horizontal surface using a hybrid neural network and simulated annealing method. Energy Conversion and Management, 153, 671–682. https://doi.org/10.1016/j.enconman.2017.09.040

Wang, H., Liu, Y., Zhou, B., Li, C., Cao, G., Voropai, N., & Barakhtenko, E. (2020). Taxonomy research of artificial intelligence for deterministic solar power forecasting. Energy Conversion and Management, 214, 112909. https://doi.org/10.1016/j.enconman.2020.112909

Yuzer, E. O., & Bozkurt, A. (2022). Deep learning model for regional solar radiation estimation using satellite images. Ain Shams Engineering Journal, 102057. https://doi.org/10.1016/j.asej.2022.102057

Zaim, S., El Ibrahimi, M., Arbaoui, A., Samaouali, A., Tlemcani, M., & Barhdadi, A. (2023). Using artificial intelligence for global solar radiation modeling from meteorological variables. Renewable Energy, 215, 118904. https://doi.org/10.1016/j.renene.2023.118904

Zhou, Y. (2022). Artificial intelligence in renewable systems for transformation towards intelligent buildings. Energy and AI, 10, 100182. https://doi.org/10.1016/j.egyai.2022.100182

Publicado

09/08/2024

Cómo citar

TIEGHI, C. P. .; NOGUEIRA, C. E. C. .; SIQUEIRA, J. A. C. .; CARMO, C. R. S. .; ZUIN, L. F. S. .; ALVAREZ, J.; CANEPPELE, F. de L. . Modelos de previsión de energía solar con Python . Research, Society and Development, [S. l.], v. 13, n. 8, p. e2913846500, 2024. DOI: 10.33448/rsd-v13i8.46500. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46500. Acesso em: 22 dic. 2024.

Número

Sección

Ingenierías