Nuevas formulaciones y perspectivas futuras de los cementos de ionómero de vidrio: Una revisión narrativa

Autores/as

DOI:

https://doi.org/10.33448/rsd-v13i11.47401

Palabras clave:

Cemento de Ionómero de Vidrio; Nanopartículas; Materiales Bioactivos; Resina; Viscosidad.

Resumen

Objetivo: Revisar y analizar críticamente las principales innovaciones en las formulaciones de los cementos de ionómero de vidrio, identificando las tendencias y los desafíos futuros para su aplicación clínica. Metodología: Se adoptó una revisión narrativa, utilizando bases de datos como Google Scholar, SciELO, Cochrane y PubMed. Se seleccionaron artículos científicos de los últimos 15 años, en portugués e inglés, que abordaran innovaciones en los cementos de ionómero de vidrio. Se aplicaron rigurosamente los criterios de inclusión y exclusión para garantizar la relevancia de los estudios analizados. Resultados y discusión: Los resultados indicaron que el uso de nanopartículas, resinas y materiales bioactivos han contribuido significativamente a mejorar las propiedades de los cementos de ionómero de vidrio. Sin embargo, la escasez de ensayos clínicos y la diversidad en las metodologías utilizadas en los estudios revisados limitan la capacidad de generalizar las conclusiones. La discusión enfatiza la necesidad de más investigaciones clínicas para validar las innovaciones de laboratorio y explorar combinaciones de materiales que puedan ofrecer soluciones aún más efectivas. Conclusión: Las innovaciones en los cementos de ionómero de vidrio presentan un considerable potencial para transformar la práctica odontológica, promoviendo tratamientos más duraderos y accesibles.

Citas

AlKahtani R. N. (2018). The implications and applications of nanotechnology in dentistry: A review. The Saudi dental journal, 30(2), 107–116. DOI: https://doi.org/10.1016/j.sdentj.2018.01.002

Amin, F., Rahman, S., Khurshid, Z., Zafar, M. S., Sefat, F., & Kumar, N. (2021). Effect of Nanostructures on the Properties of Glass Ionomer Dental Restoratives/Cements: A Comprehensive Narrative Review. Materials (Basel, Switzerland), 14(21), 6260. DOI: https://doi.org/10.3390/ma14216260

Amorim, R. G., Frencken, J. E., Raggio, D. P., Chen, X., Hu, X., & Leal, S. C. (2018). Survival percentages of atraumatic restorative treatment (ART) restorations and sealants in posterior teeth: an updated systematic review and meta-analysis. Clinical oral investigations, 22(8), 2703–2725. DOI: https://doi.org/10.1007/s00784-018-2625-5

Ana, I. D., & Anggraeni, R. (2021). Development of bioactive resin modified glass ionomer cement for dental biomedical applications. Heliyon, 7(1), e05944. DOI: https://doi.org/10.1016/j.heliyon.2021.e05944

Bonifácio, C. C., Kleverlaan, C. J., Raggio, D. P., Werner, A., de Carvalho, R. C., & van Amerongen, W. E. (2009). Physical-mechanical properties of glass ionomer cements indicated for atraumatic restorative treatment. Australian dental journal, 54(3), 233–237. DOI: https://doi.org/10.1111/j.1834-7819.2009.01125.x

Chen, S., Cai, Y., Engqvist, H., & Xia, W. (2016). Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates. Biomatter. 6(1), e1123842. DOI: https://doi.org/10.1080/21592535.2015.1123842

Dhar, V., Pilcher, L., Fontana, M., González-Cabezas, C., Keels, M. A., Mascarenhas, A. K., Nascimento, M., Platt, J. A., Sabino, G. J., Slayton, R., Tinanoff, N., Young, D. A., Zero, D. T., Pahlke, S., Urquhart, O., O'Brien, K. K., & Carrasco-Labra, A. (2023). Evidence-based clinical practice guideline on restorative treatments for caries lesions: A report from the American Dental Association. Journal of the American Dental Association (1939), 154(7), 551–566.e51. DOI: https://doi.org/10.1016/j.adaj.2023.04.011

Diniz, A. C., Bauer, J., Veloso, S. D. A. R., Abreu-Pereira, C. A., Carvalho, C. N., Leitão, T. J., Firoozmand, L. M., & Maia-Filho, E. M. (2023). Effect of Bioactive Filler Addition on the Mechanical and Biological Properties of Resin-Modified Glass Ionomer. Materials (Basel, Switzerland), 16(5), 1765. DOI: https://doi.org/10.1080/21592535.2015.1123842

Elkassas, D., & Arafa, A. (2017). The innovative applications of therapeutic nanostructures in dentistry. Nanomedicine: Nanotechnology. Biology, and Medicine. 13(4), 1543–62. DOI: https://doi.org/10.1016/j.nano.2017.01.018

Fisher, J., Varenne, B., Narvaez, D., & Vickers, C. (2018). The Minamata Convention and the phase down of dental amalgam. Bulletin of the World Health Organization, 96(6), 436–438. DOI: https://doi.org/10.2471/BLT.17.203141

Fook, A. C. B. M., et al. (2008). Materiais odontológicos: Cimentos de ionômero de vidro. Revista Eletrônica de Materiais e Processos. 3(1), 40-45. URL: https://remap.revistas.ufcg.edu.br/index.php/remap/article/viewFile/52/86

Frencken J. E. (2017). Atraumatic restorative treatment and minimal intervention dentistry. British dental journal, 223(3), 183–189. DOI: https://doi.org/10.1038/sj.bdj.2017.664

Ge, K. X., Quock, R., Chu, C. H., & Yu, O. Y. (2023). The preventive effect of glass ionomer cement restorations on secondary caries formation: A systematic review and meta-analysis. Dental materials: official publication of the Academy of Dental Materials, 39(12), e1–e17. DOI: https://doi.org/10.1016/j.dental.2023.10.008

Gjorgievska, E., Van Tendeloo, G., Nicholson, J. W., Coleman, N. J., Slipper, I. J., & Booth, S. (2015). The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements. Microscopy and Microanalysis. 21(2), 392–406. DOI: https://doi.org/10.1017/S1431927615000057

Guimarães, S. F., Amaral, G. M., Miranda, L. V. L. M., Júnior, G. C. C., da Silva Tavares, Y., Teixeira, B. M. R., & Coelho, T. M. B. (2024). Características de compômeros contendo partículas bioativas: Uma revisão integrativa. Revista CPAQV - Centro de Pesquisas Avançadas em Qualidade de Vida. 16(1). DOI: https://doi.org/10.36692/V16N1-21R

Gurgan, S., Kutuk, Z. B., Yalcin Cakir, F., & Ergin, E. (2020). A randomized controlled 10 years follow up of a glass ionomer restorative material in class I and class II cavities. Journal of dentistry, 94, 103175. DOI: https://doi.org/10.1016/j.jdent.2019.07.013

Hilgert, L. A., de Amorim, R. G., Leal, S. C., Mulder, J., Creugers, N. H., & Frencken, J. E. (2014). Is high-viscosity glass-ionomer-cement a successor to amalgam for treating primary molars?. Dental materials : official publication of the Academy of Dental Materials, 30(10), 1172–1178. DOI: https://doi.org/10.1016/j.dental.2014.07.010

Kanık, Ö., & Türkün, L. Ş. (2016). Recent approaches in restorative glass ionomer cements. J. Ege Univ. Sch. Dent, 37, 54-65. URL: https://jag.journalagent.com/eudfd/pdfs/EUDFD_37_2_54_65.pdf

Leal, S., Bonifacio, C., Raggio, D., & Frencken, J. (2018). Atraumatic Restorative Treatment: Restorative Component. Monographs in oral science, 27, 92–102. DOI: https://doi.org/10.1159/000487836

Mîrț, A. L., Ficai, D., Oprea, O. C., Vasilievici, G., & Ficai, A. (2024). Current and future perspectives of bioactive glasses as injectable material. Nanomaterials (Basel), 14(14), 1196. DOI: https://doi.org/10.3390/nano14141196

Naguib, G. N., Alshahrani, A. A., Alshahrani, A. A., & Alshahrani, A. A. (2023). Incorporation of nanoparticles in dental materials: A review of mechanical properties and clinical implications. BMC Oral Health, 23, 897. DOI: https://doi.org/10.1186/s12903-023-03652-1

Nicholson, J. W., Sidhu, S. K., & Czarnecka, B. (2024). Can glass polyalkenoate (glass-ionomer) dental cements be considered bioactive? A review. Heliyon, 10(3), e25239. DOI: https://doi.org/10.1016/j.heliyon.2024.e25239

Nomoto, R., & McCabe, J. F. (2001). Effect of mixing methods on the compressive strength of glass ionomer cements. Journal of dentistry, 29(3), 205–210. DOI: https://doi.org/10.1016/s0300-5712(01)00010-0

Paradella, T. C., Costa, A. L., & Pereira, M. A. (2013). Cimentos de ionômero de vidro na odontologia moderna. Revista de Odontologia da UNESP. 33(4), 157-61. URL: https://revodontolunesp.com.br/article/588017aa7f8c9d0a098b483e#nav7

Pokharkar, P. M., Shashikiran, N. D., Gaonkar, N., Gugawad, S., Hadakar, S., & Waghmode, S. (2022). Comparative evaluation of bioactivity, fluoride release, shear bond strength, and compressive strength of conventional glass ionomer cement incorporated with three inorganic bioactive nanoparticles: An experimental analysis. Journal of the Indian Society of Pedodontics and Preventive Dentistry, 40(4), 445–452. DOI: https://doi.org/10.4103/jisppd.jisppd_454_22

Pokrowiecki, R., Pałka, K., & Mielczarek, A. (2018). Nanomaterials in Dentistry: a Cornerstone Or a Black box? Nanomedicine, 13(6), 639–667. DOI: https://doi.org/10.2217/nnm-2017-0329

Ribeiro J. C. R., et al. (2013). Avaliação da solubilidade e desintegração de cimentos de ionômero de vidro modificados por resina e compômeros em função de proteção superficial. Revista de Odontologia da UNESP. 35(4), 247-252. URL: https://revodontolunesp.com.br/article/588017df7f8c9d0a098b4953/pdf/rou-35-4-247.pdf

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paul. Enferm. 20(2), DOI.org/10.1590/S0103-21002007000200001.

Sadat-Shojai, M., Atai, M., Nodehi, A., & Khanlar, L. N. (2010). Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dental materials: official publication of the Academy of Dental Materials, 26(5), 471–482. DOI: https://doi.org/10.1016/j.dental.2010.01.005

Schwendicke, F., Basso, M., Markovic, D., Turkun, L. S., & Miletić, I. (2021). Long-term cost-effectiveness of glass hybrid versus composite in permanent molars. Journal of dentistry, 112, 103751. DOI: https://doi.org/10.1016/j.jdent.2021.103751

Schwendicke, F., Göstemeyer, G., Blunck, U., Paris, S., Hsu, L. Y., & Tu, Y. K. (2016). Directly Placed Restorative Materials: Review and Network Meta-analysis. Journal of dental research, 95(6), 613–622. DOI: https://doi.org/10.1177/0022034516631285

Silva, D. O. C. et al. (2021). Cimento de ionômero de vidro e sua aplicabilidade na Odontologia: Uma revisão narrativa com ênfase em suas propriedades. Research, Society and Development. 10(5), e20110514884. DOI: http://dx.doi.org/10.33448/rsd-v10i5.14884.

Silva, LH, Feitosa, SA, Valera, MC, de Araujo, MA, & Tango, RN (2012). Efeito da adição de sílica silanizada nas propriedades mecânicas de resina acrílica termopolimerizável por micro-ondas. Gerodontologia , 29 (2), e1019-e1023. DOI: https://doi.org/10.1111/j.1741-2358.2011.00604.x

Spezzia, S. (2017). Cimento de ionômero de vidro: revisão de literatura. Journal of Oral Investigations, 6(2), 74-88. DOI: https://doi.org/10.18256/2238-510X.2017.v6i2.2134

Swarup, S. J., Rao, A., Boaz, K., Srikant, N., & Shenoy, R. (2014). Pulpal response to nano hydroxyapatite, mineral trioxide aggregate and calcium hydroxide when used as a direct pulp capping agent: an in vivo study. The Journal of clinical pediatric dentistry, 38(3), 201–206. DOI: https://doi.org/10.17796/jcpd.38.3.83121661121g6773

Swetha, V. C., Uloopi, D. L., RojaRamya, K. S., & Chandrasekhar, K. S. (2019). Antibacterial and mechanical properties of pit and fissure sealants containing zinc oxide and calcium fluoride nanoparticles. Contemporary Clinical Dentistry, 10(3), 477. DOI: http://dx.doi.org/10.4103/ccd.ccd_805_18

van Dijken, J. W., & Pallesen, U. (2010). Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up. Clinical oral investigations, 14(2), 217–222. DOI: https://doi.org/10.1007/s00784-009-0287-z

Vieira, I. M., Louro, R. L., Atta, M. T., Navarro, M. F. de L., & Francisconi, P. A. S. (2006). O cimento de ionômero de vidro na odontologia. Revista Saúde, 2( 1), 75-84. Recuperado de http://www.uesb.br/revista/rsc/v2/v2n1a9.pdf

Xia, Y., Zhang, F., Xie, H., & Gu, N. (2008). Nanoparticle-reinforced resin-based dental composites. Journal of dentistry, 36(6), 450–455. DOI: https://doi.org/10.1016/j.jdent.2008.03.001

Publicado

12/11/2024

Cómo citar

SILVA, B. A. C. .; SILVA, E. B. V. .; MORAES , R. A. .; SANTOS, R. S. e .; SOARES, A. F.; VIEIRA, I. M. . Nuevas formulaciones y perspectivas futuras de los cementos de ionómero de vidrio: Una revisión narrativa. Research, Society and Development, [S. l.], v. 13, n. 11, p. e67131147401, 2024. DOI: 10.33448/rsd-v13i11.47401. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/47401. Acesso em: 26 nov. 2024.

Número

Sección

Revisiones