Caracterización anatômica foliar y plasticidad fenotípica de genotipos del gigante misionero (Axonopus jesuiticus (Araújo) Valls x Axonopus scoparius (Flüggé) Kuhlm.)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v14i2.48303

Palabras clave:

Grama; Variación estructural; Proporción de esclerénquima.

Resumen

La Misionera Gigante [Axonopus jesuiticus (Araújo) Valls x Axonopus scoparius (Flüggé) Kuhlm.] es una especie forrajera nativa de Santa Catarina utilizada en sistemas de producción basados en pasturas para la alimentación de animal en el sur de Brasil. La anatomía de las hojas de las gramíneas influye en su valor nutricional, especialmente en la proporción de tejidos lignificados. El objetivo de este trabajo fue describir aspectos de la anatomía foliar considerando la proporción de tejidos y evaluar la plasticidad fenotípica de tres genotipos de la especie. Se prepararon portaobjetos permanentes a partir de hojas de los genotipos triploides V14337 y SCS315 ‘Catarina Gigante’ (2n=3x=30) y del genotipo hexaploide E401 (2n=6x=60). Los haces vasculares de la hoja pueden ser de tres tamaños, conteniendo o no esclerénquima subepidérmico, en disposiciones en “I-girder” y en “T-girder”. Los haces vasculares de todos los tamaños presentan una vaina de parénquima clorofílico en disposición radial. La mayor plasticidad fenotípica se observó en la proporción de esclerénquima. Entre los caracteres evaluados, la especie forrajera presenta baja plasticidad.

Citas

Ahmad, F.; Hammed, M.; Ashraf, M.; Ahmad, M.; Khan, A.; Nawaz, T.; Ahmad, K. S.; & Zafar, M. (2012). Role of leaf epidermis in identification and differentiation of grasses in tribe Chlorideae (Poaceae) from Pakistan. Journal of Medicinal Plant Research, 6(10), 1955-1960.

Alquini, Y., Bona, C., Boeger, M. R. T., Costa, C. G.; & Barros, C. F. (2003). Epiderme. In Appezzato-da-Glória, B. & Carmello-Guerreiro, S. M. (eds.), Anatomia Vegetal, UFV, Viçosa, p.87-107.

Alvarez, J. M.; Rocha, J. F.; & Machado, S. R. (2008) Bulliform cells in Loudetio psischrysothrix (Nees) Conertand Tristachyal eiostachya Nees (Poaceae): structure in relation to function. Brazilian Archives of Biological Technology, 51(1), 113–119.

Baldissera, T. C. (2014). O ambiente luminoso: do impacto no crescimento e desenvolvimento em nível de planta forrageira a dosséis em sistemas integrados de produção agropecuária. Curitiba, 140 f. Tese (Doutorado em Produção Vegetal) – Universidade Federal do Paraná.

Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London A, 160, 268-282.

Basso, K. C.; Andrade, J. L. A.; Assis, D. F.; Moreira, A. S. F. P.; Kuster, V. C.; Barbero, L. M.; & Ferreira, I. C. (2024). Tissue composition of Mulato II grass under different canopy structures and its impact on digestibility. Research, Society and Development, 13 (2), e8613244974.

Basso, K. C.; Galzerano, L.; Da Silva, W. L.; Ruggieri, A. C.; & Reis, R. A. (2023). Anatomical, morphogenic and structural characteristics of Xaraés palisade grass under grazing. Bioscience Journal, 39, e39067.

Bauer, M. O.; Gomide, J. A.; Da Silva, E. A. M.; Regazzi, A. J.; & Chichorro, J. F. (2008). Anatomical evaluation and nutritive value of four prevailing forage grasses in natural pasture of Viçosa-MG. Revista Brasileira de Zootecnia, 37, 9-17.

Bireahls, A.; & Fermino Junior, P. C. P. (2020). Plasticidade fenotípica em folhas de Eucalyptus dunnii Maiden e Eucalyptus benthamii Maiden & Cambage sob diferentes níveis de sombreamento. Revista do Instituto Florestal, 32(2), 143–157.

Brasil (s.d.). Ministério da Agricultura, Pecuária e Abastecimento. Cultivar Web. https://sistemas.agricultura.gov.br/snpc/cultivarweb/detalhe_cultivar.php?codsr=29453&codverif=0.

Carolin, R. C.; Jacobs, S. W. L.; & Vesk, M. (1973). The structure of the cells of the mesophyll and parenchymatous bundle sheath of the Gramineae. Botanical Journal Linnean Society, 66 (4), 259-275.

CQFS - Comissão de Química e Fertilidade do Solo RS/SC. (2016). Manual de adubação e calagem para os Estados do Rio Grande do Sul e Santa Catarina. Porto Alegre, SBCS– Núcleo Regional Sul. 376p.

Evert, R. F. (2013). Anatomia das plantas de Esau: meristemas, células e tecidos do corpo da planta: sua estrutura, função e desenvolvimento. São Paulo: Blucher.

Fahn, A. & Cutler, D. F. (1992). Xerophytes. Berlin: G. Borntraeger. In: Braun, H. J., Carlquist, S., Ozenda, P.; Roth, I. (eds), Handbuch der Pflanzenanatomie. Spezieller Teil, Vol. 13, part 3. Borntraeger, Berlin.

Ferreira, D. F. (2003). Programa Sisvar.exe: sistema de análise de variância. Versão 3.04. Lavras.

Fonseca, L.; Mezzalira, J. C.; Bremm, C.; & Carvalho, P.C.F. (2012). Management targets for maximizingthe short-termherbageintake rate ofcattlegrazing in Sorghum bicolor. Livestock Science, 45, 205–211.

Givnish, T. J. (1988). Adaptation to sun and shade: a whole perspective. Australian Journal of Plant Physiology, 15(1), 63-92.

Gould, F. W. (1968). Grass systematics. Mc Graw Hill Book, New York.

Grubbs, F. E. (1969). Procedures for detecting out lying observations in samples. Technometrics, 11(1), 1-21.

Haberlandt, G. (1928). Physiological plant anatomy. Mc Millan, London.

Iqbal, U.; Hameed, M.; Ahmad, F.; Ahmad, M. S. A.; Ashraf, M.; Kaleem, M.; Shah, S. M. R.; & Irshad, M. (2022). Contribution of structural and functional modifications to wide distribution of Bermuda grass Cynodon dactylon (L) Pers. Flora, 286, 151973.

Johansen, D. A. (1940). Plant microtechnique. New York, McGraw Hill Book Company, Inc. 523p.

Kraus, J. E. & Arduin, M. (1997). Manual básico de métodos em morfologia vegetal. EDUR. 198p.

Laitinen R. A. E. (2024). Importance of phenotypic plasticity in crop resilience. Journal of Experimental Botany, 75, 670–673.

Lajús, C. R.; Miranda, M.; Scheffer-Basso, S. M.; Carneiro, C. M.; & Escosteguy, P. A. V. (2014). Leaf tissues proportion and chemical composition of Axonopus jesuiticus x Axonopus scoparius as a function of pigs lurry application. Ciência Rural, 44 (2), 276-282.

Larcher, W. (2000). Ecofisiologia vegetal, São Carlos: RiMa, 531p.

Mansoor, U.; Fatima, S.; Hameed, M.; Naseer, M.; Ahmad, M. S. A.; Asharaf, M.; Ahmad, F.; & Waseem, M. (2019). Structural modifications for drought tolerance in stem and leaves of Cenchrus ciliaris L. ecotypes from the Cholistan Desert. Flora, 261, 151485.

Mauseth, J. D. (2008). Plant anatomy. Caldwell: Blackburn Press.

Monteiro, M. C. C. & Pace, L. B. (1984). Anatomia foliar de Axonopus compressus (Sw.) Beauv.-GRAM. Atas da Sociedade Botânica do Brasil, 2 (1), 37-44.

O’ Brien, T. P.; Feder, N.; & Mccully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, 59(2), 368-373.

Oliveira, A. B.; Faria, P. R. S.; Souto, S. M.; Carneiro, A. M.; Dobeireiner, J.; & Aronovich, S. (1973). Identificação de gramíneas tropicais com via fotossintética C4 pela anatomia foliar. Pesquisa Agropecuária Brasileira, 8(4), 267-271.

Oliveira, M. T.; Souza, G. M.; Pereira, S.; Oliveira, D. A. S.; Figueiredo-Lima; K. V.; Arruda, E.; & Santos, M. G. (2017). Seasonal variability in physiological and anatomical traits contributes to invasion success of Prosopis juliflora in tropical dry forest. Tree Physiology, 37, 326-337.

Paciullo, D. S. C. (2002). Características anatômicas relacionadas ao valor nutritivo de gramíneas forrageiras. Ciência Rural, 32 (2), 357-364.

Pachas, A. N. A.; Jacobo, E. J.; Goldfarb, M. C.; & Lacorte, S. M. (2014). Response of Axonopus catarinensis and Arachis pintoi to shade conditions. Tropical Grasslands-Forrajes Tropicales, 2 (1), 111-112.

Sanchês, S. S. C.; Araújo, R. A.; Rodrigues, R. C.; Costa, C. S.; Santos, F. N. S.; Silva, I. R.; Jesus, A. P. R.; & Lima, N. M. (2018). Quantitative anatomy and in situ ruminal degradation parameters of elephant grass under diferente defoliation frequencies. Revista Brasileira de Saúde e Produção Animal. 19, 166-177.

Scatena, V. L.; Vick, D. V.; & Parra, L. R. (2004). Anatomia de escapos, folhas e brácteas de Syngonanthus sect. Eulepis (Bong. Ex Koern.) Ruhland (Eriocaulaceae). Acta Botanica Brasilica, 18(4), 825-837.

Shapiro, S. S. & Wilk, M. B. (1965). Analysis of variance test for normality (complete samples). Biometrika, 52(3-4), 591-611.

Silva, L. M. & Alquini, Y. (2003). Anatomia comparativa de folhas e caules de Axonopus scoparius (Flügge) Kuhlm e Axonopus fissifolius (Raddi) Kuhlm (Poaceae). Revista Brasileira de Botânica, 26(2), 185-192.

Valladares, F.; Gomez, D.; & Zavala, M. A. (2006). Quantitative estimation of phenotypic plasticity: bridging the gap between the evalutionary concept and its ecological applications. Journal of Ecology, 94, 1103-1116.

Valladares, F.; Wright, J. S.; Lasso, E.; Kitajima, K.; & Pearcy, R. W. (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rain forest. Ecology, 81, 1925–1936.

Valls, J. F. M.; Santos, S.; Tcacenco, F. A.; & Galdeano, F. (2000). A grama missioneira gigante: híbrido entre duas forrageiras cultivadas do gênero Axonopus (Gramineae). In: CONGRESSO NACIONAL DE GENÉTICA, 46., 2000. Águas de Lindóia. Anais... Águas de Lindóia.

Violle, C.; Navas, M. L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; & Garnier, E. (2007). Let the concept of trait be functional! Oikos 116(5), 882–892.

Vitória, A.P.; Alves, L.F.; & Santiago, L.S. (2019). Atlantic Forest and leaf traits: an overview. Tree, 33(1), 1535-1547.

Zhao Y.; Liu Q. Z.; Wang X. R.; Zhang W. X.; Xu W.; Zhang Y. Z.; & Liu B. S. (2024). ZmCER1, a putative ECERIFERUM1 protein in maize, functions in cuticular wax biosynthesis and bulliform cell development. The Crop Journal, 12, 743-752.

Zuch, D. T.; Doyle, S. M.; Majda, M.; Smith, R. S.; Robert, S.; & Torii, K. U. (2022). Cell biology of the leaf epidermis: fate specification, morphogenesis, and coordination. The Plant Cell, 34, 209-227.

Publicado

22/02/2025

Cómo citar

VARGAS, H. C.; BASSO, K. C.; COSTA, M. D.; FERMINO JUNIOR, P. C. P. Caracterización anatômica foliar y plasticidad fenotípica de genotipos del gigante misionero (Axonopus jesuiticus (Araújo) Valls x Axonopus scoparius (Flüggé) Kuhlm.) . Research, Society and Development, [S. l.], v. 14, n. 2, p. e9214248303, 2025. DOI: 10.33448/rsd-v14i2.48303. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/48303. Acesso em: 24 jul. 2025.

Número

Sección

Ciencias Agrarias y Biológicas