Biorremediación de aguas residuales de ríos urbanos utilizando microalgas Chlorella vulgaris para generar biomasa con potencial la producción de biodiesel

Autores/as

  • Isadora Machado Marques Universidade Federal da Bahia
  • Natália Ribeiro Melo Universidade Salvador
  • Adna Caroline Vale Oliveira Universidade Salvador
  • Ícaro Thiago Andrade Moreira Universidade Federal da Bahia

DOI:

https://doi.org/10.33448/rsd-v9i7.4882

Palabras clave:

Biodiesel; contenido de lípidos; microalgas; aguas residuales urbanas; energías renovables.

Resumen

La producción de biocombustibles a través de la biomasa de microalgas representa una nueva generación de materias primas de fuentes renovables para satisfacer los clamores de la sociedad y la creciente inserción en el mercado de combustibles de productos que podrían otorgarle al planeta un futuro sostenible. El presente estudio evalúa la biomasa obtenida de las microalgas Chlorella vulgaris cuando se cultiva en aguas residuales urbanas, extrayendo los lípidos de la biomasa y realizando un análisis de cromatografía de gases de la composición de Ésteres Metílicos de Ácidos Grasos (EMAG) después de enviar los lípidos a través del proceso de transesterificación. El cultivo de microalgas se controló mediante análisis de clorofila (a) y el mayor crecimiento celular fue de 845.8 µg L-1 usando aguas residuales urbanas como medio de crecimiento. Los nutrientes de interés se monitorearon para determinar la concentración primaria de 8.06 ± 0.06 mg L-1 de nitrógeno amoniacal, 12.27 ± 0.27 mg L-1 de nitrato y 21.22 ± 0.85 mg L-1 de fosfato, reduciendo aproximadamente el 99% de nitrógeno y nitrato amoniacal, junto con la reducción del 87% de fosfato. La constitución lipídica extraída de 3,7 g de biomasa seca de Chlorella vulgaris después del cultivo con aguas residuales urbanas, fue del 7,7%. Los lípidos extraídos de la biomasa de Chlorella vulgaris son una producción adecuada de biodiesel con respecto a las cantidades de EMAG identificadas, después del análisis realizado, la comparación de los resultados obtenidos con otros estudios y la evaluación de hipótesis.

Biografía del autor/a

Isadora Machado Marques, Universidade Federal da Bahia

Departamento de Engenharia Ambiental, Escola Politécnica, Universidade Federal da Bahia, Brasil.

Natália Ribeiro Melo, Universidade Salvador

Engenharia Ambiental

Adna Caroline Vale Oliveira, Universidade Salvador

Departamento de Engenharia Ambiental

Ícaro Thiago Andrade Moreira, Universidade Federal da Bahia

Departamento de Engenharia Ambiental, Escola Politécnica, Universidade Federal da Bahia, Brasil.

Citas

American Public Health Association (APHA) (2012). Standard Methods for Examination of Water and Wastewater, Washington (USA). Ed. 22ª.

American Society for Testing and Materials (ASTM) (2005). Standard Guide for Displaying Results of Chemical Analyses of Groundwater for Major Ions and Trace Elements - Diagrams Based on Data Analytical Calculations (Withdrawn 2014). ASTM D5877-95

Álvarez-Díaz, P. D., Ruiz, J., Arbib, Z., Barragán, J., Garrido-Pérez, M. C., & Perales, J. A. (2017). Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Research, 24, 477–485. https://doi.org/10.1016/j.algal.2017.02.006

Andrade, D. S., Telles, T. S., & Leite Castro, G. H. (2020). The Brazilian microalgae production chain and alternatives for its consolidation. Journal of Cleaner Production, 250, 119526. https://doi.org/10.1016/j.jclepro.2019.119526

Benedito, V. M., Porto, P. S. S., Freitas, R. R. (2019). Modelagem do crescimento de microalgas: Um estudo bibliométrico. Research, Society and Development. 8(1), 1 - 18. http://dx.doi.org/10.33448/rsd-v8i1.511

Cardoso, C. K. M., Cardoso, R. P. G. & Moreira, I. T. A. (2017). Avaliação de Sorventes Naturais para Remediação de Petróleo Derramado em Águas Marinhas Costeiras: O Estado da Arte e um Estudo de Caso Aplicado. Seminário Estudantil de Produção Acadêmica, 16, 178.

Cardoso, C. K. M., Santana, R. S. G., Silva, V. L., Meirelles, A. C. L. E., Mattedi, S., Lobato, A. K. C. L., & Moreira, I. T. A. (2020). A Kinetic and equilibrium study of petroleum adsorption using pre-treated coconut fibers. Research, Society and Development, 9 (7) 01 - 31. http://dx.doi.org/10.33448/rsd-v9i7.4413

Carneiro, G. A., Silva, J. R., Oliveira, G. A., Pio, F. P. B. (2018). Uso de microalgas para produção de biodiesel. Research, Society and Development, 7 (5) 01 - 12.

Cheah, W. Y., Ling, T. C., Show, P. L., Juan, J. C., Chang, J. S., & Lee, D. J. (2016). Cultivation in wastewaters for energy: A microalgae platform. Applied Energy, 179, 609–625. https://doi.org/10.1016/j.apenergy.2016.07.015

Daneshvar, E., Zarrinmehr, M. J., Koutra, E., Kornaros, M., Farhadian, O., & Bhatnagar, A. (2019). Sequential cultivation of microalgae in raw and recycled dairy wastewater: Microalgal growth, wastewater treatment and biochemical composition. Bioresource Technology, 273(October 2018), 556–564. https://doi.org/10.1016/j.biortech.2018.11.059

Delgadillo-Mirquez, L., Lopes, F., Taidi, B., & Pareau, D. (2016). Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports, 11, 18–26. https://doi.org/10.1016/j.btre.2016.04.003

Deviram, G., Mathimani, T., Anto, S., Ahamed, T. S., Ananth, D. A., & Pugazhendhi, A. (2020). Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. Journal of Cleaner Production, 253, 119770. https://doi.org/10.1016/j.jclepro.2019.119770

Dickinson, S., Mientus, M., Frey, D., Amini-Hajibashi, A., Ozturk, S., Shaikh, F., Sengupta, D., & El-Halwagi, M. M. (2017). A review of biodiesel production from microalgae. Clean Technologies and Environmental Policy, 19(3), 637–668. https://doi.org/10.1007/s10098-016-1309-6

dos Santos, R. R., Kunigami, C. N., Gomes Aranda, D. A., & Luz Lapa Teixeira, C. M. (2016). Assessment of triacylglycerol content in Chlorella vulgaris cultivated in a two-stage process. Biomass and Bioenergy, 92, 55–60. https://doi.org/10.1016/j.biombioe.2016.05.014

Hamrick, K., & Gallant, M. (2017). Unlocking potential: State of the Voluntary Carbon MArkets 2017. Forest Trends’s Ecosystem Marketplace, 42.

Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143–169. https://doi.org/10.1016/j.rser.2011.07.143

Iasimone, F., Panico, A., De Felice, V., Fantasma, F., Iorizzi, M., & Pirozzi, F. (2018). Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. Journal of Environmental Management, 223(November 2017), 1078–1085. https://doi.org/10.1016/j.jenvman.2018.07.024

Jenkins, S. H. (1982). Standard Methods for the Examination of Water and Wastewater. Water Research, 16(10), 1495–1496. https://doi.org/10.1016/0043-1354(82)90249-4

Jose, T. K., & Anand, K. (2016). Effects of biodiesel composition on its long term storage stability. Fuel, 177, 190–196. https://doi.org/10.1016/j.fuel.2016.03.007

Kang, X., Lin, R., O’Shea, R., Deng, C., Li, L., Sun, Y., & Murphy, J. D. (2020). A perspective on decarbonizing whiskey using renewable gaseous biofuel in a circular bioeconomy process. Journal of Cleaner Production, 255, 120211. https://doi.org/10.1016/j.jclepro.2020.120211

Khanzada, Z. T. (2020). Phosphorus removal from landfill leachate by microalgae. Biotechnology Reports, 25, e00419. https://doi.org/10.1016/j.btre.2020.e00419

Kialashaki, M., Mahdavi, M. A., & Gheshlaghi, R. (2019). Improved transesterification conditions for production of clean fuel from municipal wastewater microalgae feedstock. Journal of Cleaner Production, 241, 118388. https://doi.org/10.1016/j.jclepro.2019.118388

Knothe, G., & Razon, L. F. (2017). Biodiesel fuels. Progress in Energy and Combustion Science, 58, 36–59. https://doi.org/10.1016/j.pecs.2016.08.001

Kumar, P. K., Krishna, S. V., Naidu, S. S., Verma, K., Bhagawan, D., & Himabindu, V. (2019). Biomass production from microalgae Chlorella grown in sewage, kitchen wastewater using industrial CO2 emissions: Comparative study. Carbon Resources Conversion, 2(2), 126–133. https://doi.org/10.1016/j.crcon.2019.06.002

Lam, M. K., Yusoff, M. I., Uemura, Y., Lim, J. W., Khoo, C. G., Lee, K. T., & Ong, H. C. (2017). Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renewable Energy, 103, 197–207. https://doi.org/10.1016/j.renene.2016.11.032

Marques, I. M., Moreira, Í. T. A., Melo, N. R., Oliveira, A. C. V., Wicks, W. S. F., & Souza, L. C. (2017). Protótipo Para Tratamento De Águas Residuais Urbanas Utilizando a Espécie De Microalga Chlorella Vulgaris Com Vistas À Geração De Bioprodutos. RDE - Revista de Desenvolvimento Econômico, 1(39), 183. https://doi.org/10.21452/rde.v3nesp.5407

Marques, I. M., Oliveira, A. C. V., Souza, L. C., Melo, N. R., Wicks, W. S. F., & Moreira, Í. T. A. (2016). Avaliação Do Nível De Degradação Das Águas Superficiais Do Rio Lucaia, Salvador – Ba. 341–348. https://doi.org/10.5151/engpro-eneeamb2016-rh-010-5119

Mohd-Sahib, A. A., Lim, J. W., Lam, M. K., Uemura, Y., Isa, M. H., Ho, C. D., Kutty, S. R. M., Wong, C. Y., & Rosli, S. S. (2017). Lipid for biodiesel production from attached growth Chlorella vulgaris biomass cultivating in fluidized bed bioreactor packed with polyurethane foam material. Bioresource Technology, 239, 127–136. https://doi.org/10.1016/j.biortech.2017.04.118

Moreira, I. T. A., Oliveira, O. M. C., Triguis, J. A., Queiroz, A. F. S., Santos, A. M. P., Martins, C. M. S., Silva, C. S. & Jesus, R. S. (2011). Phytoremediation using Rizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchemical Journal, 99, 376-382.

Moreira, I. T. A., Oliveira, O. M. C., Triguis, J. A., Queiroz, A. E. S., Ferreira, S. L. C., Martins, C. M. S., Silva, A. C. M. & Falcão, B. A. (2013). Phytoremediation in mangrove sediments impacted by persistent total petroleum hydrocarbons (TPH’s) using Avicennia schaueriana. Marine Pollution Bulletin, 67, 130-136.

Moreira, I. T. A., Oliveira, O. M. C., Silva, C. S., Rios, M. C., Queiroz, A. F. S., Assunção, R. V. & Carvalho, A. P. N. (2014). Chemometrics applied in laboratory study on formation of oil-spm aggregates (OSA) – a contribution to ecological evaluation. Microchemical Journal, 118, 198-202.

Moreira, I. T. A., Oliveira, O. M. C., Azwell, T., Queiroz, A. F. S., Nano, R. M. W., Souza, E. S., dos Anjos, J. A. S. A., Assunção, R. V. & Guimarães, L. M. (2016). Strategies of Bioremediation for the Degradation of Petroleum Hydrocarbons in the Presence of Metals in Mangrove Simulated. Chean Soil Air Water, 44 (6), 631-637.

Mubarak, M., Shaija, A., & Suchithra, T. V. (2015). A review on the extraction of lipid from microalgae for biodiesel production. Algal Research, 7, 117–123. https://doi.org/10.1016/j.algal.2014.10.008

Mujtaba, G., & Lee, K. (2017). Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge. Water Research, 120, 174–184. https://doi.org/10.1016/j.watres.2017.04.078

Nascimento, R. S. L., Silva, L. M. L., Periard, L., Santiago, A. F. (2020). Tratamento de águas residuárias em fotobiorreatores de fluxo contínuo iluminados por luz artificial e solar. Research, Society and Development. 9(6), 1 - 15. http://dx.doi.org/10.33448/rsd-v9i6.3748

Nayak, M., Karemore, A., & Sen, R. (2016). Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal Research, 16, 216–223. https://doi.org/10.1016/j.algal.2016.03.020

Oliveira, A. C. V., Silva, A. de S., & Moreira, Í. T. A. (2019). Economia Circular: Conceitos E Contribuições Na Gestão De Resíduos Urbanos. RDE - Revista de Desenvolvimento Econômico, 3(44), 273–289. https://doi.org/10.36810/rde.v3i44.6386

Orsavova, J., Misurcova, L., Vavra Ambrozova, J., Vicha, R., & Mlcek, J. (2015). Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences, 16(6), 12871–12890. https://doi.org/10.3390/ijms160612871

Posadas, E., Morales, M. del M., Gomez, C., Acién, F. G., & Muñoz, R. (2015). Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chemical Engineering Journal, 265, 239–248. https://doi.org/10.1016/j.cej.2014.12.059

Pragya, N., Pandey, K. K., & Sahoo, P. K. (2013). A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable and Sustainable Energy Reviews, 24, 159–171. https://doi.org/10.1016/j.rser.2013.03.034

Prommuak, C., Pavasant, P., Quitain, A. T., Goto, M., & Shotipruk, A. (2012). Microalgal lipid extraction and evaluation of single-step biodiesel production. Engineering Journal, 16(5), 157–166. https://doi.org/10.4186/ej.2012.16.5.157

Qin, L., Wang, Z., Sun, Y., Shu, Q., Feng, P., Zhu, L., Xu, J., & Yuan, Z. (2016). Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environmental Science and Pollution Research, 23(9), 8379–8387. https://doi.org/10.1007/s11356-015-6004-3

Raheem, A., Prinsen, P., Vuppaladadiyam, A. K., Zhao, M., & Luque, R. (2018). A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. Journal of Cleaner Production, 181, 42–59. https://doi.org/10.1016/j.jclepro.2018.01.125

Ramluckan, K., Moodley, K. G., & Bux, F. (2014). An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel, 116, 103–108. https://doi.org/10.1016/j.fuel.2013.07.118

Redfield, A. C. (1958). Redfield_AmSci_1958.pdf. In American Scientist.

Salama, E. S., Jeon, B. H., Chang, S. W., Lee, S. hun, Roh, H. S., Yang, I. S., Kurade, M. B., El-Dalatony, M. M., Kim, D. H., Kim, K. H., & Kim, S. (2017). Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. Journal of Cleaner Production, 168, 1017–1024. https://doi.org/10.1016/j.jclepro.2017.09.057

Samorì, G., Samorì, C., Guerrini, F., & Pistocchi, R. (2013). Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I. Water Research, 47(2), 791–801. https://doi.org/10.1016/j.watres.2012.11.006

Sanz-Luque, E., Chamizo-Ampudia, A., Llamas, A., Galvan, A., & Fernandez, E. (2015). Understanding nitrate assimilation and its regulation in microalgae. Frontiers in Plant Science, 6(OCTOBER). https://doi.org/10.3389/fpls.2015.00899

Serrano, M., Martínez, M., & Aracil, J. (2013). Long term storage stability of biodiesel: Influence of feedstock, commercial additives and purification step. Fuel Processing Technology, 116, 135–141. https://doi.org/10.1016/j.fuproc.2013.05.011

Singh, P., Kumari, S., Guldhe, A., Misra, R., Rawat, I., & Bux, F. (2016). Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renewable and Sustainable Energy Reviews, 55, 1–16. https://doi.org/10.1016/j.rser.2015.11.001

Souza Andrade, A. C. F. E. (n.d.). Microalgas de Águas Continentais (Vol. 2).

Verma, P., Sharma, M. P., & Dwivedi, G. (2016). Evaluation and enhancement of cold flow properties of palm oil and its biodiesel. Energy Reports, 2, 8–13. https://doi.org/10.1016/j.egyr.2015.12.001

Wang, Q., Jin, W., Zhou, X., Guo, S., Gao, S. H., Chen, C., Tu, R., Han, S. F., Jiang, J., & Feng, X. (2019). Growth enhancement of biodiesel-promising microalga Chlorella pyrenoidosa in municipal wastewater by polyphosphate-accumulating organisms. Journal of Cleaner Production, 240, 118148. https://doi.org/10.1016/j.jclepro.2019.118148

Wu, K. chau, Ho, K. chung, Tang, C. cheung, & Yau, Y. hung. (2018). The potential of foodwaste leachate as a phycoremediation substrate for microalgal CO2 fixation and biodiesel production. Environmental Science and Pollution Research, 1–11. https://doi.org/10.1007/s11356-018-1242-9

Xaaldi Kalhor, A., Movafeghi, A., Mohammadi-Nassab, A. D., Abedi, E., & Bahrami, A. (2017). Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Marine Pollution Bulletin, 123(1–2), 286–290. https://doi.org/10.1016/j.marpolbul.2017.08.045

Xin, L., Hong-ying, H., Ke, G., & Ying-xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), 5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016

Zainuddin, Z. B., Zailani, S., Govindan, K., Iranmanesh, M., & Amran, A. (2017). Determinants and outcome of a Clean Development Mechanism in Malaysia. Journal of Cleaner Production, 142(January 2018), 1979–1986. https://doi.org/10.1016/j.jclepro.2016.11.086

Descargas

Publicado

16/06/2020

Cómo citar

MARQUES, I. M.; MELO, N. R.; OLIVEIRA, A. C. V.; MOREIRA, Ícaro T. A. Biorremediación de aguas residuales de ríos urbanos utilizando microalgas Chlorella vulgaris para generar biomasa con potencial la producción de biodiesel. Research, Society and Development, [S. l.], v. 9, n. 7, p. e823974882, 2020. DOI: 10.33448/rsd-v9i7.4882. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4882. Acesso em: 1 jul. 2024.

Número

Sección

Ingenierías