Caracterización fisicoquímica y tecnológica de la harina extruida de sorgo del genotipo BRS 305

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i8.4963

Palabras clave:

Cereal; Extrusión; Sorghum bicolor (L.).

Resumen

El presente trabajo tuvo como objetivo caracterizar la harina de sorgo extruida (HSE) del genotipo BRS 305 (pericarpio marrón y tanino) en términos de propiedades físico-químicas, antioxidantes y microbiológicas. Para esto, se realizaron análisis centesimales, cuantificación del contenido de almidón total, resistente y no resistente, así como la evaluación del pH, la actividad antioxidante, las tasas de absorción en agua, aceite y leche y análisis microbiológicos compuestos por un número más probable de coliformes totales y coliformes termotolerantes, recuento de mohos y levaduras, Bacillus cereus y Salmonella spp. La harina evaluada presentó contenido de humedad (> 8%), con concentraciones de proteínas, lípidos, cenizas y carbohidratos iguales a 12.48%, 1.72%, 1.42% y 76.17%, respectivamente. En cuanto a la actividad antioxidante por el método ABTS, la harina presentó un contenido igual a 156.08 μmol de Trolox.g-1. En cuanto a los parámetros tecnológicos, las tasas de absorción en agua, aceite y leche oscilaron entre 1,35 y 2,34 g/g. En términos microbiológicos, todos los parámetros evaluados estaban dentro de los estándares recomendados. Se concluye que el HSE es apto para el consumo humano, siendo una opción de reemplazo total o parcial de harina de trigo, en productos de panadería y/o confitería ya que no contiene gluten, pudiendo ser consumido por personas celíacas o intolerantes a esta proteína. 

Citas

Afify, A. E. M. R., El-Beltagi, H. S., El-Salam, S. M. A., & Omran, A. A. (2011). Bioavailability of iron, zinc, phytate and phytase activity during soaking and germination of white sorghum varieties. Plosone, 6(10): 1-7. DOI: https://doi.org/10.1371/journal.pone.0025512.

Aletor, O., Oshodi, A. A., & Ipinmoroti, K, (2002). Chemical composition of commom leaf vegetables and functional proprerties of their leaf protein concentrates. Food Chemistry, 78: 63-68. DOI: https://doi.org/10.1016/S0308-8146(01)00376-4.

Antunes, R. C., Rodriguez, N. M., Gonçalves, L. C., Rodrigues, J. A. S., Borges, I., Borges. A. L. C. C., & Saliba, E. O. S. (2007). Composição bromatológica e parâmetros físicos de grãos de sorgo com diferentes texturas do endosperma. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 59(5), 1351-54. DOI: https://doi.org/10.1590/S0102-09352007000500042.

Anunciação, P. C., Cardoso, L. M., Gomes, J. V. P., Della Lucia, C. M., Carvalho, C. W. P., Galdeano, M. C., Queiroz, V. A. V., Alfenas, R. C. G., Martino, H. S. D., & Pinheiro-Sant’Ana, H. M. (2017). Comparing sorghum and wheat whole grain breakfast cereals: Sensorial acceptance and bioactive compound contente. Food Chemistry, 221, 984-989. DOI: https://doi.org/10.1016/j.foodchem.2016.11.065.

AOAC. Association of Official Analytical Chemists. (2012). Official methods of analysis of the AOAC International. 19th edition. Washington: AOAC.

ARNAO, MB (2000). Some methodological problems in determining the antioxidant activity using chromogenic radicals: a practical case. Trends in Science and Technology, 11, 419-421. DOI: https://doi.org/10.1016/s0924-2244(01)00027-9.

Awika, J. M., Rooney, L. W., Wu, X., Prior, R. L., & Cisneros-Zevallos, L, (2003). Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. Journal of Agricultural and Food Chemistry, 51: 6657–6662. DOI: https://doi.org/10.1021/jf034790i.

Awika, J. M., & Rooney, L. W. (2004). Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 65, 1199-1221. DOI: https://doi.org/10.1016/j.phytochem.2004.04.001.

Bashir, K. & Aggarwal, M. (2016). Effects of gamma irradiation on the physicochemical, thermal and functional properties of chickpea flour. LWT - Food Science and Technology, 69, 614–622. DOI: https://doi.org/10.1016/j.lwt.2016.02.022.

Becker, F. S., Eifert, E. C., Junior, M. S. S., Tavares, J. A. S., & Carvalho, A. V. (2014). Physical and functional evaluation of extruded flours obtained from different rice genotypes. Ciência e Agrotecnologia, 38, 367-374. DOI: https://doi.org/10.1590/S1413-70542014000400007.

Boekel, S. V., Couto, M. A. P. G., Ascheri, J. L. R., Srur, A. U. O. S., & Lima, E. C. S. (2011). Elaboração de farinha mista extrusada de arroz, soja e resíduo de laranja-pêra como fonte de fibra alimentar. Magistra, Cruz das Almas, 23(4), 243-251.

Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução - CNNPA nº 12, de 1978. (1978). Normas técnicas especiais do Estado de São Paulo, revistas pela CNNPA, relativas a alimentos (e bebidas), para efeito em todo território brasileiro. Diário Oficial da República Federativa do Brasil, Brasília.

Brasil. Ministério da Saúde, Agência Nacional de Vigilância Sanitária (ANVISA), Resolução RDC nº 12 de 02 de janeiro de 2001. (2001). Regulamento técnico sobre os padrões microbiológicos para Alimentos. Diário Oficial da União. Brasília.

Campelo, F. A., Henriques, G. S., Simeone, M. L. F., Queiroz, V. A. V., Silva, M. R., Augusti, R., Melo, J. O. F., Lacerda, I. C. A., & Araújo, R. L. B. (2020). Study of thermoplastic extrusion and its impact on the chemical and nutritional characteristics in two sorghum genotypes SC 319 and BRS 332. Journal of the Brazilian Chemical Society, 31(4), 788-802. DOI: https://doi.org/10.21577/0103-5053.20190243.

Cardoso, L. M., Montini, T. A., Pinheiro, S. S., Pinheiro-Sant’Ana, H. M., Martino, H. S. D., & Moreira, A. V. B. (2014). Effects of processing with dry heat and wet heat on the antioxidante profile of sorghum. Food Chemistry, 152, 210-217. DOI: https://doi.org/10.1016/j.foodchem.2013.11.106.

Carvalho, C. W. P., Ascheri, J. L. R., Queiroz, V. A. V., Galdeano, M. C., Takeiti, C. Y., & Solórzano, J. W. V. (2014). Elaboração de farinhas instantâneas à base de sorgo integral cultivar BRS310. Comunicado técnico 203, Embrapa, 1 ed., 3 p.

Chantada-Vazquez, M. P., Moreda-Pineiro, A., Barciela-Alonso, M. C., & Barmejo-Berrera, P. (2017). Spectrometric-based techniques for metal-binding protein assessment in clinical, environmental, and food samples. Applied Spectroscopy, 52:145–174. DOI: https://doi.org/10.1080/05704928.2016.1213736.

Chao, C., Yu, J., Wang, S., Copeland, L., & Wang, S. (2018). Mechanisms Underlying the Formation of Complexes between Maize Starch and Lipids. Journal of Agricultural and Food Chemistry, 66(1), 272–278. DOI: https://doi.org/10.1021/acs.jafc.7b05025.

Dykes, L., & Rooney, L. W. (2006). Sorghum and millet phenols and antioxidants. Journal of Cereal Science, 44, 236-251. DOI: https://doi.org/10.1016/j.jcs.2006.06.007.

Dykes, L., Seitz, L. M., Rooney, W. L., & Rooney, L. W. (2009). Flavonoid composition of red sorghum genotypes. Food Chemistry, 116, 313-317. DOI: https://doi.org/10.1016/j.foodchem.2009.02.052.

Do Prado, M. E. A., Queiroz, V. A. V., Correia, V. T. V., Neves, E. O., Roncheti, E. F. S., Gonçalves, A. C. A., Menezes, C. B., & Oliveira, F. C. E. (2019). Physicochemical and sensorial characteristics of beef burgers with added tannin and tannin-free whole sorghum flours as isolated soy protein replacer. Meat Science, 150. 93-100. DOI: https://doi.org/10.1016/j.meatsci.2018.12.006.

Fiorda, F. A., Júnior, M. S. S., Silva, F. L., Souto, L. R. F., & Grossmann, M. V. E. (2013). Farinha de bagaço de mandioca: aproveitamento de subproduto e comparação com fécula de mandioca, Pesquisa Agropecuária Tropical, 43(4), 408-416. DOI: https://doi.org/10.1590/S1983-40632013000400005.

Freitas, T. S., & Leonel, M. (2008). Amido resistente em fécula de mandioca extrusada sob diferentes condições operacionais. Alimentos e Nutrição, Araraquara, 19, 183-190.

Galle, S., Schwab, C., Dal Bello, F., Coffey, A., Gänzle, M., & Arendt, E. (2012). Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. International Journal of Food Microbiology, 155, 105-112. DOI: https://doi.org/10.1016/j.ijfoodmicro.2012.01.009.

Hagenimana, A., Ding, X., & Fang, T. (2006). Evaluation of rice flour modified by extrusion cooking. Journal of Cereal Science, 43, 38-46. DOI: https://doi.org/10.1016/j.jcs.2005.09.003.

Htoon, A., Shrestha, A. K., Flanagan, B. M., Lopez-Rubio, A., Bird, A. R., Gilbert, E. P., & Gidley, M. J. (2009). Effects of processing high amylase maize starches under controlled conditions on structural organization and amylase digestibility. Carbohydrate Polymers, 75. 236-245. DOI: https://doi.org/10.1016/j.carbpol.2008.06.016.

Khan, I., Yousif, A., Johnson, S. K., & Gamlath, S. (2013). Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta. Food Research International, 54. 578-586. DOI: https://doi.org/10.1016/j.foodres.2013.07.059.

Kinsella, J. E. (1976). Functional properties in foods; a survey. CRC Critical Reviews in Food Science and Nutrition, 7(3), 219-280.

Koa, S. S., Jin, X., Zhang, J., & Sopade, P. A. (2017). Extrusion of a model sorghum barley blend: Starch digestibility and associated properties. Journal of Cereal Science, 75, 314-323. DOI: https://doi.org/10.1016/j.jcs.2017.04.007.

Lopes, R. C. S. O., Lima, S. L. S., Silva, B. P., Toledo, R. C. L., Moreira, M. E. C., Anunciação, P. C., Walter, E. H. M., Carvalho, C. W. P., Queiroz, V. A. V., Ribeiro, A. Q. & Martino, H. S. D. (2018). Evaluation of the health benefits of consumption of extruded tannin sorghum with unfermented probiotic milk in individuals with chronic kidney disease. Food Research International, 107, 629-638. DOI: https://doi.org/10.1016/j.foodres.2018.03.004.

Martino, H. S. D., Tomaz, P. A., Moraes, E. A., Conceição, L. L., Oliveira, D. S., Queiroz, V. A. V., Rodrigues, J. A. S., Pirozi, M. R., Pinheiro-Sant'ana, H. M., & Ribeiro, S. M. R. (2012). Chemical characterization and size distribution of sorghum genotypes for human consumption. Revista Instituto Adolfo Lutz, 71(2), 337-344.

Martins, K. R. B. (2017). Efeito de dois genótipos de grãos integrais de sorgo (Sorghum bicolor L.) e arroz (Oriza sativa L.) sobre as propriedades funcionais e tecnológicas de macarrão sem glúten de massa seca. Dissertação (Tecnologia de Alimentos) Instituto Federal de Educação, Ciência e Tecnologia Goiano, 127 p.

Menezes, C. B., Carvalho-Júnior, G. A., Silva, L. A., Bernardino, K. C., Souza, V. F., Tardin, F. D., & Schaffert, R. E. (2014). Combining ability of grain sorghum lines selected for aluminum tolerance. Crop Breeding and Applied Biotechnology, 14, 42-48. DOI: https://doi.org/10.1590/S1984-70332014000100007.

Moraes, E. A., Natal, D. I. G., Queiroz, V. A. V., Schaffert, R. E., Cecon, P. R., Paula, S. O., Benjamim, L. A., Ribeiro, S. M. R., & Martino, H. S. D. (2012). Sorghum genotype may reduce low-grade inflammatory response and oxidative stress and maintains jejunum morphology of rats fed a hyperlipidic diet. Food Research International, 49, 553-559. DOI: https://doi.org/10.1016/j.foodres.2012.07.029.

Moraes, E. A., Oliveira, F. C. E., Queiroz, V. A. V., Schaffert, R. E., Cecon, P. R., Moreira, A. V., Ribeiro, S. M. R., & Martino, H. S. D. (2020). Domestic Processing Effects on Antioxidant Capacity, Total Phenols and Phytate Content of Sorghum. Current Nutrition & Food Science, 16, 1-7. DOI: https://doi.org/10.2174/1573401315666191125123700.

Moreno, C. R., Fernández, P. C. R., Rodríguez, E. O. C., Carrillo, J. M., & Rochín, S. M. (2018). Changes in nutritional properties and bioactive compounds in cereals during extrusion cooking. IntechOpen, 1, 103-124. DOI: https://doi.org/10.5772/intechopen.68753.

Mukisa, I. M., Muyanja, C. M. B. K., Byaruhanga, Y. B., Schuller, R. B., Langsrud, T., & Narvhus, J. A. (2012). Gamma irradiation of sorghum flour: Effects on microbial inactivation, amylase activity, fermentability, viscosity and starch granule structure. Radiation Physics and Chemistry, 81, 345–351. DOI: https://doi.org/10.1016/j.radphyschem.2011.11.021.

Oliveira, F. C. E., Pontes, J. P., Queiroz, V. A. V., Roncheti, E. F. S., Dutra, V. L. M., Correia, V. T. V., & Ferreira, A. A. (2020). Greek yogurt with added sorghum flour: antioxidant potential and sensory acceptance. Revista Chilena de Nutrición, 47(2). 272-280. DOI: http://dx.doi.org/10.4067/S0717-75182020000200272.

Paiva, C. L., Queiroz, V. A. V., Simeone, M. L. F., Schaffert, R. E., Oliveira, A. C., & Silva, C. S. (2017). Mineral content of sorghum genotypes and the influence of water stress. Food Chemistry, 214, 400-405. DOI: https://doi.org/10.1016/j.foodchem.2016.07.067.

Paiva, C. L., Queiroz, V. A. V., Garcia, M. A. V. T., & Carvalho, C. W. P. (2018). Acceptability and study of shelf life of gluten free cereal bar with popped and extruded sorghum based on a consumer acceptability. Agrarian Sciences Journal, 10(1), 52-58.

Panyo, A. E., & Emmambux, M. N. (2017). Amylose–lipid complex production and potential health benefits: A mini‐review. Starch, 69. DOI: https://doi.org/10.1002/star.201600203.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Porte, A., Silva, S. F., Almeida, V. D. S., Silva, T. X., & Porte, L. H. M. (2011). Propriedades funcionais tecnológicas das farinhas de sementes de mamão (Carica papaya) e de abóbora (Cucurbita sp). Revista Brasileira de Produtos Agroindustriais, 13, 91-96.

Queiroz, V. A. V., Moraes, E. M., Schaffert, R. E., Moreira, A. V., Ribeiro, S. M. R., & Martino, H. S. D. (2011). Potencial funcional e tecnologia de processamento do sorgo [Sorghum bicolor (L.) Moench], para alimentação humana. Revista Brasileira de Milho e Sorgo, 10(3), 180-195. DOI: https://doi.org/10.18512/1980-6477/rbms.v10n3p180-195.

Queiroz, V. A. V., Carneiro, H. L., Deliza, R., Rodrigues, J. A. S., Vasconcellos, J. H., Tardin, F. D., & Queiroz, L. R. (2012). Genótipos de sorgo para produção de barra de cereais. Pesquisa Agropecuária Brasileira, 47, 287-293. DOI: https://doi.org/10.1590/S0100204X2012000200018.

Queiroz, V. A. V., Silva, C. S, Menezes, C. B., Schaffert, R. E., Guimarães, F. F. M., Guimarães, L. J. M., Guimarães, P. E. O., & Tardin, F. D. (2015). Nutritional composition of sorghum [Sorghum bicolor (L.) Moench] genotypes cultivated without and with water stress. Journal of Cereal Science, 65, 103-111. DOI: https://doi.org/10.1016/j.jcs.2015.06.018.

Resende, L. M.; Franca, A. S., & Oliveira, L. S. (2019). Buriti (Mauritia flexuosa L. f.) fruit by-products flours: Evaluation as source of dietary fibers and natural antioxidants. Food Chemistry, 270, 53-60. DOI: https://doi.org/10.1016/j.foodchem.2018.07.079.

Silva, N,, Junqueira, V. C. A., & Silveira, N. F. A. (2010). Manual de métodos de análise microbiológica de alimentos, São Paulo: Livraria Varela.

Silva, R. M., Silva, S. N., Wanderley, R. O. S., Paiva, A. C .C., & Medeiros, A. P. (2020). Caracterização química e colorimétrica de farinhas de cascas de laranja, melão e abacaxi. Research, Society and Development, 9(7): e139973912. DOI: http://dx.doi.org/10.33448/rsd-v9i7.3912.

Souza, J. M. L., Álvares, V. S., Leite, F. M. N., Reis, F. S., & Felisberto, F. A. V. (2008). Caracterização físico-quimica de farinhas oriundas de variedades de mandioca utilizadas no vale do Juruá, Acre. Acta Amazonica, 38(4), 761 – 766.

Teixeira, N. C., Queiroz, V. A. V., Rocha, M. C., Amorim, A. C .P., Soares, T. O., Monteiro, M. A. M., Menezes, C. B., Schaffert, R. E., Garcia, M. A. V. T., & Junqueira, R. G. (2016). Resistant starch content among several sorghum (Sorghum bicolor) genotypes and the effect of heat treatment on resistant starch retention in two genotypes. Food Chemistry, 197, 291-296. DOI: https://doi.org/10.1016/j.foodchem.2015.10.099.

Vargas-Solorzano, J. W., Carvalho, C. W. P., Takeiti, C. Y., Ascheri, J. L. R., & Queiroz, V. A. V. (2014). Physicochemical properties of expanded extrudates from colored sorghum genotypes. Food Research Internation, 55, 37-44. DOI: https://doi.org/10.1016/j.foodres.2013.10.023.

Vieira, A. L. S., Duarte, G. B., Queiroz, V. A. V., Correa, T. R., Silva, V. D. M., Araújo, R. L. B., Garcia, M. A. V., & Fante, C. A. (2020). Caracterização do amido isolado de diferentes cultivares de sorgo (Sorghum bicolor L. Moench). Brazilian Journal of Development, 6(5), 24704-24718. DOI: https://doi.org/10.34117/bjdv6n5-067.

Zhang, H. J., Wang, L., & Guo, X. N. (2012). Preparation and functional properties of rice bran proteins from heat-stabilized defatted rice bran. Food Research International, 47, 359–363. DOI: https://doi.org/10.1016/j.foodres.2011.08.014.

Publicado

27/06/2020

Cómo citar

CORREIA, V. T. da V.; D’ANGELIS, D. F.; RODRIGUES, C. G.; AMANTE, P. R.; QUEIROZ, V. A. V.; FERREIRA, A. A.; FANTE, C. A. Caracterización fisicoquímica y tecnológica de la harina extruida de sorgo del genotipo BRS 305. Research, Society and Development, [S. l.], v. 9, n. 8, p. e115984963, 2020. DOI: 10.33448/rsd-v9i8.4963. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4963. Acesso em: 2 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas