Evaluación de nanofluidos de montmorillonita hidrofílica y goma de xantano en salina

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i8.5305

Palabras clave:

Nanoarcilla; Xantano; Nanofluido de perforación; Reología.

Resumen

Con el aumento estimado de la demanda de petróleo para las próximas décadas, la necesidad de exploración de áreas no convencionales se intensifica, y asociada con ellas, dados los altos costos de exploración, la necesidad de mejorar las tecnologías disponibles. En este sentido, en la última década, la aplicación de nanopartículas para la mejora de los fluidos de perforación se ha intensificado. En este escenario, las nanoarcillas de montmorillonita y las gomas de xantano se exploraron poco para el desarrollo de nanofluidos. En este trabajo, se verificó la influencia de la nanoarcilla hidrofílica de montmorillonita en los parámetros reológicos de las soluciones de cloruros de xantano, sodio y calcio. Para esto, primero, la arcilla se caracterizó por DRX, FRX y TGA. Luego, manteniendo constantes las concentraciones de sales y xantano, se evaluó la influencia de la variación en la concentración de nanoarcilla en la reología de la solución. Luego, manteniendo constantes las concentraciones de los componentes, se verificó la influencia de la temperatura y luego el tiempo de hidratación en la reología de la mezcla. Finalmente, para evaluar la interacción de las partículas en la mezcla, se verificó la conductividad eléctrica y el potencial Zeta, variando la concentración de nano arcilla y el tiempo de hidratación. Se concluyó que: para ciertas concentraciones de nanoarcilla, hay una mejora en la reología de las soluciones de xantano; la adición de nanoarcilla favorece la reología en la mezcla de xantano con el aumento de la temperatura; el tiempo de hidratación no afecta significativamente la reología del nanofluido; Existe una interacción entre nano-arcilla y xantano.

Citas

Abdou, M. I. & Ahmed, H.E.-S. (2011). Effect of particle size of bentonite on rheological behavior of the drilling mud. Petrol. Sci. Technol., 29(21), 2220–2233. doi: 10.1080/10916461003663065

Abu-Jdayil, B. (2011). Rheology of sodium and calcium bentonite–water dispersions: Effect of electrolytes and aging time. Int. J. Miner. Process., 98(3-4),208–213. doi: 10.1016/j.minpro.2011.01.001

Aftab, A, Ismail, A.R., Ibupoto, Z.H., Akeiber, H.& Malghani, M.G.K. (2017). Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review.Renew. Sust. Energ. Rev., 76, 1301–1313. doi: 10.1016/j.rser.2017.03.050

Alizadeh, S., Sabbaghi, S.& Soleymani, M. (2015). Synthesis of Alumina/Polyacrylamide nanocomposite and its influence on viscosity of drilling fluid. Int. J. Nano Dimens., 6(3), 271-276. doi: 10.7508/IJND.2015.03.006

Al-Yasiri, M., Awad, A., Pervaiz, S.& Wen, D. (2019). Influence of silica nanoparticles on the functionality of water-based drilling fluids. J. Petrol. Sci. Eng., 179, 504–512. doi: 10.1016/j.petrol.2019.04.081

Al-Yasiri, M. S. & Al-Sallami, W.T. (2015). How the Drilling Fluids Can be Made More Efficient by Using Nanomaterials. Am. J. Nano Res. Appl., 3, 41-45. doi: 10.11648/j.nano.20150303.12

Amanullah, M., Al-Arfaj, M. K. & Al-Abdullatif, Z.A. (2011, March 1-3). Preliminary test results of nano-based drilling fluids for oil and gas field application. Paper presented at theSPE/IADC Drilling Conference and Exhibition. Amsterdam: Society of Petroleum Engineers.

Amiri, M. C. & Sadeghialiabadi, H. (2014). Evaluating the Stability of Colloidal Gas Aphrons in the Presence of Montmorillonite Nanoparticles. Colloid. Surface. A, 457, 212-219. doi: 10.1016/j.colsurfa.2014.05.076

Amorim, L.V. (2003). Melhoria, Proteção e Recuperação da Reologia de Fluidos Hidroargilosos para Uso na Perfuração de Poços de Petróleo. (Doctoral Thesis). Universidade Federal de Campina Grande, Campina Grande, PB.

Barry, M.M., Jung, Y., Lee, J. -K., Phuoc, T.X.& Chyu, M.K. (2015).Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids. J. Petrol. Sci. Eng., 127, 338–346. doi: 10.1016/j.petrol.2015.01.012

Benyounes, K., Mellak, A. & Benchabane, A. (2010). The Effect of Carboxymethylcellulose and Xanthan on the Rheology of Bentonite Suspensions. Energy Source. Part A, 32(17), 1634–1643. doi: 10.1080/15567030902842244

Bera, A.& Belhaj, H. (2016). Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery - A comprehensive review. J. Nat. Gas Sci. Eng., 34, 1284-1309. doi: 10.1016/j.jngse.2016.08.023

Bordi, F. & Carnetti, C. (1986). Equivalent Conductivity of Carboxymethylcellulose Aqueous Solutions with Divalent Counterions. J. Phys. Chem., 90(13), 3034-3038. doi: 10.1021/j100404a049

Borges, C.D., Vendruscolo, C.T., Martins, A.L.; Lomba, R.F.T. (2009). Comportamento Reológico de Xantana Produzida por Xanthomonas arboricola pv pruni para Aplicação em Fluido de Perfuração de Poços de Petróleo. Polimeros, 19(2), 160-165. doi: 10.1590/S0104-14282009000200015

Caenn, R., Darley, H. C. H. & Gray, G. R. (2014). Fluidos de Perfuração e Completação (6 ed.). Rio de Janeiro, RJ: Elsevier B. V..

Cheraghian, G. (2017). Application of Nano-Particles of Clay to Improve Drilling Fluid. Int. J. Nanosci. Nanotechnol., 13(2), 177-186.

Cheraghian, G., Wu, Q., Mostofi, M., Li, M.-C., Afrand, M. & Sangwai, J.S. (2018). Effect of a Novel Clay/silica Nanocomposite on Water-Based Drilling Fluids: Improvements in Rheological and Filtration Properties. Colloid.Surface. A, 555, 339-350. doi: 10.1016/j.colsurfa.2018.06.072

Choppe, E., Puaud, F., Nicolai, T.& Benyahia, L. (2010). Rheology of xanthan solutions as a function of temperature, concentration and ionic strength.Carbohydr. Polym., 82(4), 1228–1235. doi: 10.1016/j.carbpol.2010.06.056

Chung, Y.-L.& Lai, H.-M. (2010). Preparation and properties of biodegradable starch-layered double hydroxide Nanocomposites. Carbohydr. Polym., 80(2), 525–532. doi: 10.1016/j.carbpol.2009.12.020

Comba, S., Dalmazzo, D., Santagata, E.& Sethi, R. (2011).Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. J. Hazard. Mater., 185(2-3), 598–605. doi: 10.1016/j.jhazmat.2010.09.060

Contreras, O., Hareland, G., Husein, M., Nygaard, R.& Al-Saba, M. (2014, February 26-28). Application of in-house prepared nanoparticles as filtration control additive to reduce formation damage. Paper presented at theSPE International Symposium and Exhibition on Formation Damage Control. Lafayette, LA: Society of Petroleum Engineers. doi: 10.2118/168116-MS

Dolez, P.I. (2015). Nanoengineering: Global Approaches to Health and Safety Issues (pp. 3-40). Amsterdam: Elsevier B. V..

Energy Information Administration. (2017, September 14). EIA projects 28% increase in world energy use by 2040. Retrieved March 27, 2020, from https://www.eia.gov/todayinenergy/detail.php?id=32912.

Energy Information Administration. (2006, June). International Energy Outlook 2006. Retrieved March 28, 2020, from http://www.economicswebinstitute.org/essays/energy2006.pdf

Fakoya, M.F.& Shah, S.N. (2013, March 26-27). Rheological Properties of Surfactant-Based and Polymeric Nano-Fluids. Paper presented at theSPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition. The Woodlands, TX: Society of Petroleum Engineers. doi: 10.2118/163921-MS

Fitzgerald, B. L., McCourt, A. J. & Brangetto, M. (2000, February 23-25). Drilling Fluid Plays Key Role in Developing the Extreme HTHP, Elgin/Franklin Field. Paper presented at the IADC/SPE Drilling Conference. New Orleans, LA: Society of Petroleum Engineers. doi: 10.2118/59188-MS

Gaidzinski, R., Osterreicher-Cunha, P., Duailibi Fh., J. & Tavares, L. M. (2009) Modification of clay properties by aging: Role of indigenous microbiota and implications for ceramic processing. Appl. Clay Sci., 43(1), 98–102. doi: 10.1016/j.clay.2008.07.007

García-Ochoa, F., Santos, V.E., Casas, J.A.& Gómez, E. (2000). Xanthan gum: production, recovery, and properties.Biotechnol. Adv., 18(7), 549-579. doi: 10.1016/S0734-9750(00)00050-1

Gierszewska, M., Jakubowska, E.& Olewnik-Kruszkowska, E. (2019). Effect of chemical crosslinking on properties of chitosan-montmorillonite composites. Polym. Test., 77, 105872. doi: 10.1016/j.polymertesting.2019.04.019

Golubeva, O. Y., Ul’yanova, N. Y., Kostyreva, T. G., Drozdova, I. A. & Mokeev, M. V. (2013). Synthetic Nanoclays with the Structure of Montmorillonite: Preparation, Structure, and Physico-Chemical Properties. Glass Phys. Chem+, 39(5), 533–539. doi: 10.1134/S1087659613050088

Grim, R. E. & Güven, N. (1978).Bentonites: Geology, Mineralogy, Properties and Uses Developments in Sedimentology(24 ed.). Amsterdam: Elsevier Scientific Publishing Company.

Hassani, A. H & Ghazanfari, M.H. (2017). Improvement of non-aqueous colloidal gas aphron-based drilling fluids properties: Role of hydrophobic nanoparticles. J. Nat. Gas Sci. Eng., 42, 1-12. doi: 10.1016/j.jngse.2017.03.005

Herschel, W.H.& Bulkley, R. (1926). Konsistenzmessungen von Gummi-Benzollösungen. Kolloid-Z., 39, 291–300.

Hoelscher, K. P., Stefano, G.D., Riley, M. & Young, S. (2012, June 12-14). Application of nanotechnology in drilling fluids. Paper presented at theSPE International Oilfield Nanotechnology Conference and Exhibition. Noordwijk: Society of Petroleum Engineers. doi: 10.2118/157031-MS

Hoidy, W.H., Ahmad, M. B., Al Mulla, E.A.J.& Ibrahim, N.A.B. (2009). Synthesis and Characterization of Organoclay from Sodium Montmorillonite and Fatty Hydroxamic.Acids. Am. J. Appl. Sci., 6(8), 1567-1572. doi: 10.3844/ajassp.2009.1567.1572

Holme, K. R., Hall, L. D, Speers, R.A.& Tung, M.A. (1988). High shear rate flow behavior of xanthan gum dispersions. Food Hydrocoll., 2(2), 159-167. doi: 10.1016/S0268-005X(88)80014-6

Howard, S., Kaminski, L.& Downs, J. (2015, June 3-5). Xanthan stability in formate brines - Formulating non-damaging fluids for high temperature applications. Paper presented at theSPE European Formation Damage Conference and Exhibition.Budapest: Society of Petroleum Engineers. doi: 10.2118/174228-MS

Ismail, A. R., Aftab, A., Ibupoto, Z. H. & Zolkifile, N. (2016). The novel approach for the enhancement of rheological properties of water-based drilling fluids by using multi-walled carbono nanotube, nanosilica and glass beads. J. Petrol. Sci. Eng., 139, 264–275. doi: 10.1016/j.petrol.2016.01.036

Jain, R. & Mahto, V. (2015). Evaluation of polyacrylamide/clay composite as a potential drilling fluid additive in inhibitive water based drilling fluid system. J. Petrol. Sci. Eng., 133, 612–621. doi: 10.1016/j.petrol.2015.07.009

Jang, H.Y., Zhang, K., Chon, B.H.& Choi, H.J. (2015). Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution. J. Ind. Eng. Chem., 21, 741–745. doi: 10.1016/j.jiec.2014.04.005

Kelco, C. Q. (2000). Xanthan gum book (8 ed.). Atlanta, GA: C. Q. Kelco.

Kelessidis, V.C.& Maglione, R. (2008). Yield stress of water–bentonite dispersions. Colloid.Surface. A, 318(1-3), 217–226. doi: 10.1016/j.colsurfa.2007.12.050

Kelessidis, V. C., Maglione, R., Tsamantaki, C.& Aspirtakis, Y. (2006). Optimal determination of rheological parameters for Herschel–Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling. J. Petrol. Sci. Eng., 53(3-4), 203–224. doi: 10.1016/j.petrol.2006.06.004

Kelessidis, V.C., Papanicolaou, C.& Foscolos, A. (2009).Application of Greek lignite as an additive for controlling rheological and filtration properties of water–bentonite suspensions at high temperatures: A review. Int. J. Coal Geol., 77(3-4), 394–400. doi: 10.1016/j.coal.2008.07.010

Kelessidis, V.C., Tsamantaki, C.& Dalamarinis, P. (2007). Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions. Appl. Clay Sci., 38(1-2), 86–96. doi: 10.1016/j.clay.2007.01.011

Kennedy, J.R.M., Kent, K.E.& Brown, J.R. (2015). Rheology of dispersions of xanthan gum, locust bean gum and mixed biopolymer gel with silicon dioxide nanoparticles. Mat. Sci. Eng. C, 48, 347–353. doi: 10.1016/j.msec.2014.12.040

Khalil, M. & Jan, B.M. (2012). Herschel-Bulkley Rheological Parameters of a Novel Environmentally Friendly Lightweight Biopolymer Drilling Fluid from Xanthan Gum and Starch. J. Appl. Polym. Sci., 124(1), 595–606. doi: 10.1002/app.35004

Khodja, M., Canselier, J. P., Bergaya, F., Fourar, K., Khodja, M., Cohaut, N. & Bemounah, A. (2010). Shale problems and water-based drilling fluid optimisation in the Hassi Messaoud Algerian oil field. Appl. Clay Sci., 49(4), 383-393. doi: 10.1016/j.clay.2010.06.008

Khunawattanakul, W., Puttipipatkhachorn, S., Rades, T.& Pongjanyakul, T. (2010). Chitosan–magnesium aluminum silicate nanocomposite films: Physicochemical characterization and drug permeability. Int. J. Pharm., 393(1-2), 219–229. doi: 10.1016/j.ijpharm.2010.04.007

Laird, D.A. (2006). Influence of layer charge on swelling of smectites. Appl. Clay Sci., 34(1-4), 74–87. doi: 10.1016/j.clay.2006.01.009

Li, M., Wu, Q., Song, K., Hoop, C.F. D., Lee, S., Qing, Y.& Wu, Y. (2016). Cellulose Nanocrystals and Polyanionic Cellulose as Additives in Bentonite Water-Based Drilling Fluids: Rheological Modeling and Filtration Mechanisms. Ind. Eng. Chem. Res., 55(1), 133–143. doi: 10.1021/acs.iecr.5b03510

Liu, H., Nakagawa, K., Chaudhary, D., Asakuma, Y. & Tadé; M. O. (2011). Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chem. Eng. Res. Des., 89(11), 2356–2364. doi: 10.1016/j.cherd.2011.02.023

Lucena, D. V., Lira, H. L. & Amorim, L. V. (2014). Efeito de aditivos poliméricos nas propriedades reológicas e de filtração de fluidos de perfuração. Tecnol. Metal Mater. Miner., 11(1), 66-73. doi: 10.4322/tmm.2014.010

Luporini, S. & Bretas, R. E. S. (2011). Caracterização Reológica da Goma Xantana: Influência de Íons Metálicos Univalente e Trivalente e Temperatura em Experimentos Dinâmicos. Polimeros, 21(3), 188-194. doi: 10.1590/S0104-14282011005000043

Maghzi, A., Kharrat, R., Mohebbi, A. & Ghazanfari, M.H. (2014).Theimpact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery. Fuel, 123, 123–132. doi: 10.1016/j.fuel.2014.01.017

Mariani, F. Q., Villalba, J. C. & Anaissi, F.J. (2013). Caracterização Estrutural de Argilas Utilizando DRX com Luz Síncrotron, MEV, FTIR e TG-DTG-DTA. Orbital: Electronic J. Chem.,5(4), 249-256.

Melo, C., Garcia, P.S., Grossmann, M.V.E., Yamashita, F., Dall’Antônia, L. H. &Mali, S. (2011).Properties of Extruded Xanthan-Starch-Clay Nanocomposite Films. Braz. Arch.Biol. Technol., 54(6), 1223-1333. doi: 10.1590/S1516-89132011000600019

Melo, K. C. (2008). Avalição e modelagem reológica de fluidos de perfuração base água (Master’s Thesis). Universidade Federal do Rio Grande do Norte, Natal, RN.

Mélo, T. J. A., Araújo, E. M., Brito, G. F. & Agrawal, P. (2014). Development of nanocomposites from polymer blends: effect of organoclay on the morphology and mechanical properties. J. Alloy Compd., 615, S391-S391. doi: 10.1016/j.jallcom.2013.11.151

Menezes, R. R., Melo, L.R.L., Fonseca, F.A. S., Ferreira, H. S., Martins, A. B. & Neves, G.A. (2008). Caracterização de argilas bentoníticas do Município de Sussego, Paraíba, Brasil. Revista Eletrônica de Materiais e Processos, 3(2), 36-43.

Monteiro, S. N. & Vieira, C. M. F. (2004). Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil. Appl. Clay Sci., 27(3-4), 229–234. doi: 10.1016/j.clay.2004.03.002

Morariu, S., Bercea, M. & Brunchi, C.-E. (2018). Phase separation in xanthan solutions. Cellul. Chem. Technol., 52(7-8), 569-576.

Morita, R. Y., Barbosa, R. V. & Kloss, J. R. (2015). Caracterização de Bentonitas Sódicas: Efeito do Tratamento com Surfactante Orgânico Livre de Sal de Amônio. Rev. Virtual Quim.,7(4),1286-1298. doi: 10.5935/1984-6835.20150071

Nejad, M.H., Ganster, J., Bohn, A., Volkert, B.& Lehmann, A. (2011). Nanocomposites of starch mixed esters and MMT: Improved strength, stiffness, and toughness for starch propionate acetate laurate. Carbohydr. Polym., 84(1), 90–95. doi: 10.1016/j.carbpol.2010.10.067

Noori, S., Kokabi, M. & Hassan, Z.M. (2015). Nanoclay Enhanced the Mechanical Properties of Poly(Vinyl Alcohol)/Chitosan/Montmorillonite Nanocomposite Hydrogel as Wound Dressing. Procedia Mater.Sci., 11, 152–156. doi: 10.1016/j.mspro.2015.11.023

Oueslati, W., Ammar, M.& Chorfi, N. (2015). Quantitative XRD Analysis of the Structural Changes of Ba-Exchanged Montmorillonite: Effect of an in Situ Hydrous Perturbation. Minerals, 5, 507-526. doi: 10.3390/min5030507

Parizad, A., Shahbazi, K. & Tanha, A. A. (2018). Enhancement of polymeric water-based drilling fluid properties using nanoparticles. J. Petrol. Sci. Eng., 170, 813–828. doi: 10.1016/j.petrol.2018.06.081

Perween, S., Thakur, N. K., Beg, M., Sharma, S. & Ranjan, A. (2019). Enhancing the properties of Water based Drilling Fluid using Bismuth Ferrite Nanoparticles. Colloid. Surface. A, 561, 165-177. doi: 10.1016/j.colsurfa.2018.10.060

Ponmani, S., William, J. K. M., Samuel, R., Nagarajan, R. & Sangwai, J. S. (2014). Formation and characterization of thermal and electrical properties of CuO and ZnO nanofluids in xanthan gum. Colloid. Surface. A, 443, 37–43. doi: 10.1016/j.colsurfa.2013.10.048

Pooja, D., Panyaram, S., Kulhari, H., Rachamalla, S.S.& Sistla, R. (2014). Xanthan gum stabilized gold nanoparticles: Characterization, Biocompatibility, Stability and Cytotoxicity. Carbohydr. Polym., 110, 1-9. doi: 10.1016/j.carbpol.2014.03.041

Prodanov, C. C. & Freitas, E. C. (2013). Metodologia do Trabalho Científico: Métodos e Técnicas de Pesquisa e do Trabalho Acadêmico (2nd ed., pp. 129-141). Feevale. http://www.feevale.br/Comum/midias/8807f05a-14d0-4d5b-b1ad-1538f3aef538/E-book%20Metodologia%20do%20Trabalho%20Cientifico.pdf

Rao, M. A., Rizvi, S. S. H. & Datta, A. K. (2005). Engineering Properties of Foods (3 ed, pp. 461-500). Boca Raton, FL: Taylor and Francis Group.

Reinoso, D., Martín-Alfonso, M.J., Luckham, P.F.& Martínez-Boza, F.J. (2019). Rheological characterisation of xanthan gum in brine solutions at high temperature. Carbohydr. Polym., 203, 103–109. doi: 10.1016/j.carbpol.2018.09.034

Riley, M., Young, S., Stamatakis, E., Guo, Q., Ji, L., Stefano, G. D.,… & Friedheim, J. (2012, March 28-30). Wellbore stability in unconventional shales-the design of a nanoparticle fluid. Paper presented at theSPE Oil and Gas India Conference and Exhibition. Mumbai, MH: Society of Petroleum Engineers. doi: 10.2118/153729-MS

Rochefort, W. E. & Middleman, S. (1987). Rheology of Xanthan Gum: Salt, Temperature, and Strain Effects in Oscillatory and Steady Shear Experiments. J. Rheol., 31, 337-369. doi: 10.1122/1.549953

Rojtanatanya, S. & Pongjanyakul, T. (2010). Propranolol-magnesium aluminum silicate complex dispersions and particles: characterization and factors influencing drug release. Int. J; Pharm., 383(1-2), 106-115. doi: 10.1016/j.ijpharm.2009.09.016

Rongthong, T., Sungthongjeen, S., Siepmann, J.& Pongjanyakul, T. (2013). Quaternary polymethacrylate-magnesium aluminum silicate films: molecular interactions, mechanical properties and tackiness. Int. J; Pharm., 458(1), 57-64. doi: 10.1016/j.ijpharm.2013.10.016

Sadeghalvaad, M & Sabbaghi, S. (2015). The Effect of the TiO2/Polyacrylamide Nanocomposite on Water-Based Drilling Fluid Properties. Powder Technol., 272, 113–119. doi: 10.1016/j.powtec.2014.11.032

Sagou, J.-P. S.; Ahualli, S. & Thomas, F. (2015). Influence of ionic strength and polyelectrolyte concentration on the electrical conductivity of suspensions of soft colloidal polysaccharides. J. Colloid Interf. Sci., 459, 212–217. doi: 10.1016/j.jcis.2015.08.001

Salopek, B., Krasić, D. & Filipović, S. (1992). Measurement and application of zeta-potential.Rud.-geol.-naft.zb., 4,147-151.

Santos, P. S. (2000). Tecnologia das Argilas: Fundamentos (Vol. 1). São Paulo, SP: Edgard Blücher.

Santos, R. F. A., Reis, M. M., Ueki, M. M., Santos, Z. I. G. & Brito, G. F. (2016, November 6-10). Influência da argila montmorilonita nas propriedades mecânicas e morfológicas de nanocompósitos obtidos a partir de blendas de polietileno/poli (tereftalato de etileno). Paper presented at the 22º Congresso Brasileiro de Engenharia e Ciência dos Materiais. Natal, RN: Associação Brasileira de Cerâmica.

Sato, T., Watanabe, T.& Otsuka, R. (1992).Effects of layer charge, charge location, and energy change on expansion proprerties of dioctahedral smectites. Clay. Clay Miner., 40(1), 103-113. doi: 10.1346/CCMN.1992.0400111

Shakib, J. T., Kanani, V. & Pourafshary, P. (2016). Nano-clays as additives for controlling filtration properties of water - bentonite suspensions. J. Petrol. Sci. Eng., 138, 257-264. doi: 10.1016/j.petrol.2015.11.018

Shaw, D. J. (1992). Colloid and Surface Chemistry (4 ed., pp.174-243). Oxford: Elsevier Science Ltd.

Slavutsky, A. M., Bertuzzi, M. A. & Armada, M. (2012). Water barrier properties of starch-clay nanocomposite films. Braz. J. Food. Technol., 15(3), 208-218. doi: 10.1590/S1981-67232012005000014

Soliman, A. A., El-hoshoudy, A.N.& Attia, A.M. (2020). Assessment of xanthan gum and xanthan-g-silica derivatives as chemical flooding agents and rock wettability modifiers. Oil Gas Sci. Technol., 75(12). doi: 10.2516/ogst/2020004

Speers, R. A. & Tung, M. A. (1986). Concentration and Temperature Dependence of Flow Behavior of Xanthan Gum Dispersions. J. Food Sci., 51(1), 96-98. doi: 10.1111/j.1365-2621.1986.tb10844.x

Srivatsa, J. T. & Ziaja, M.B. (2011, November 15-17). An experimental investigation on use of nanoparticles as fluid loss additives in a surfactant-polymer based drilling fluids. Paper presented at theInternational Petroleum Technology Conference. Bangkok: Society of Petroleum Engineers. doi: 10.2523/IPTC-14952-MS

Taheri, A. & Jafari, S.M. (2019). Biopolymer Nanostructures for Food Encapsulation Purposes (Vol.1, 1 ed., pp.521-578). Amsterdam: Elsevier B.V.

Tang, X., Alavi, S. &Herald, T.J. (2008). Effects of plasticizers on the structure and properties of starch–clay. Carbohydr. Polym., 74(3), 552–558. doi: 10.1016/j.carbpol.2008.04.022

Thonart, Ph., Paquot, M., Hermans, L. & Alaoui, H. (1985). Xanthan production by Xanthomonas campestris NRRL B-1459 and interfacial approach by zeta potential measurement. Enzyme Microb. Technol., 7(5), 235-238. doi: 10.1016/S0141-0229(85)80009-0

Uddin, F. (2008). Clays, Nanoclays, and Montmorillonite Minerals. Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 39(A), 2804-2814.

Villaça, J. C., Silva, L.C.R. P., Barbosa, L.H. F., Rodrigues, C. R., Lira, L. M., Carmo, F. A.,... & Cabral, L.M. (2014). Preparation and characterization of polymer/layered silicate pharmaceutical nanobiomaterials using high clay load exfoliation processes. J. Ind. Eng. Chem., 20(6), 4094-4101.

Vipulanandan, C. & Mohammed, A. (2015). Effect of nanoclay on the electrical resistivity and rheological properties of smart and sensing bentonite drilling muds. J. Petrol. Sci. Eng., 130, 86-95. doi: 10.1016/j.petrol.2015.03.020

Vryzas, Z. & Kelessidis, V.C. (2017). Nano-Based Drilling Fluids: A Review. Energies, 10(4), 540, 1-34. doi: 10.3390/en10040540

Vryzas, Z., Wubulikasimu, Y., Gerogiorgis, D. I. & Kelessidis, V. C. (2016). Understanding the Temperature Effect on the Rheology of Water-Bentonite Suspensions. Annual Transactions - The Nordic Rheology Society, 24, 199-208.

Wang, Y., Xiong, Y., Wang, J.& Zhang, X. (2017). Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: highly efficient swelling behaviors and super-sorbent for dye removal from wastewater. Colloid.Surface. A, 520, 903-913. doi: 10.1016/j.colsurfa.2017.02.050

William, J.K. M., Ponmani, S., Samuel, R., Nagarajan, R.& Sangwai, J.S. (2014). Effect of CuO and ZnO nanofluids in xanthan gum on thermal, electrical and high pressure rheology of water-based drilling fluids. J. Petrol. Sci. Eng., 117, 15–27. doi: 10.1016/j.petrol.2014.03.005

Wyatt, N. B. & Liberatore, M. W. (2010). The effect of counterion size and valency on the increase in viscosity in polyelectrolyte solution. Soft Matter, 6(14), 3346–3352. doi: 10.1039/C000423E

Wyatt, N. B. & Liberatore, M. W. (2009). Rheology and Viscosity Scaling of the Polyelectrolyte Xanthan Gum. J. Appl. Polym. Sci., 114, 4076–4084. doi: 10.1002/app.31093

Wyatt, N. B., Gunther, C. M. & Liberatore, M. W. (2011). Increasing viscosity in entangled polyelectrolyte solutions by the addition of salt. Polymer, 52(11), 2437-2444. doi: 10.1016/j.polymer.2011.03.053

Xie, W. & Lecourtier, J. (1992). Xanthan behavior in water-fluid drilling fluids. Polym. Degrad. Stabil., 38(2), 155-164.

Xie, W., Gao, Z., Pan, W. P., Hunter, D., Singh, A. & Vaia, R. (2001). Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite. Chem. Mater., 13(9), 2979-2990. doi: 10.1021/cm010305s

Yang, K. K., Wang, X. L. & Wang, Y. Z. (2007). Progress in Nanocomposite of Biodegradable Polymer. J. Ind. Eng. Chem., 13(4), 485-500.

You, Z., Mills-Beale, J., Foley, J. M., Roy, S., Odegard, G. M., Dai, Q. & Goh, S. W. (2011). Nanoclay-modified asphalt materials: Preparation and characterization. Constr. Build. Mater., 25(2), 1072–1078. doi: 10.1016/j.conbuildmat.2010.06.070

Zhong, L., Oostrom, M., Truex, M. J., Vermeul, V. R. & Szecsody, J. E. (2013). Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J. Hazard. Mater., 244–245, 160–170. doi: 10.1016/j.jhazmat.2012.11.028

Descargas

Publicado

25/06/2020

Cómo citar

SOUZA, F. M. de; SOARES, J. M. D.; OLIVEIRA, H. P. de; RIGOLI, I. C.; LUPORINI, S. Evaluación de nanofluidos de montmorillonita hidrofílica y goma de xantano en salina. Research, Society and Development, [S. l.], v. 9, n. 8, p. e75985305, 2020. DOI: 10.33448/rsd-v9i8.5305. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5305. Acesso em: 22 nov. 2024.

Número

Sección

Ingenierías