Los híbridos de biomasa de sorgo difieren en crecimiento y uso de nitrógeno en baja saturación de bases en suelos arenosos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i9.6289

Palabras clave:

Bioenergía; Nutriente; Toxicidad por alumínio; Sorghum bicolor.

Resumen

Las plantas de sorgo se cultivan bien en el centro de Brasil, que es pobre en fertilidad y rico en aluminio. Estas características requieren estudios para conocer los mejores híbridos para el medio ambiente, especialmente aquellos que se refieren al uso de nutrientes como el nitrógeno (N). Este nutriente es el factor más limitante para el crecimiento, desarrollo y producción de las plantas; por eso es muy importante comprender los efectos de la baja saturación de bases en el uso de N en la biomasa serológica, es decir, los híbridos utilizados con fines bioenergéticos. Para evaluar el efecto del aumento de la saturación de bases en el uso de nitrógeno en híbridos de biomasa de sorgo, instalamos un experimento cuantitativo en invernadero en diseño factorial aleatorizado utilizando dos híbridos de biomasa serológica (PA 5L60 y PA 5D61) en cinco saturaciones de bases diferentes (V%): 15, 35, 40, 50 y 60. Este diseño experimental nos estudia cinco componentes diferentes. de aluminio en el suelo. El crecimiento de ambos híbridos de sorgo se vio afectado solo por V% 15. La concentración y el contenido de N, así como los indicadores de eficiencia de uso de N se vieron afectados por V% 15 en ambos híbridos; sin embargo, ningún híbrido PA 5D61 fue menos sensible que el híbrido PA 5L60 en las condiciones estudiadas. Un análisis de la PCA que mostró que el híbrido PA 5D61 mostró más tolerancia al aluminio y usa N de manera más eficiente que el híbrido PA 5L60 y, por lo tanto, argumenta que este híbrido puede usarse en áreas marginales de baja fertilidad como producto primario para la bioenergía.

Citas

Cambraia, J., Pimenta, J. A., Estevão, M. M. & Sant’anna, R. (1989) Aluminum effects on nitrate uptake and reduction in sorghum. Journal of Plant Nutrition, 12, 1435-45. https://doi.org/10.1080/01904168909364048

Caniato, F.F., Guimarães, C.T., Schaffert, R.E., Alves, V.M.C., Kochian, L.V., Borém, A., Klein, P.E. & Magalhaes, J.V. (2007) Genetic diversity for aluminum tolerance in sorghum. Theoretical and Applied Genetics, 114, 863-76. https://doi.org/10.1007/s00122-006-0485-x

Carlin, S.D. & Santos, D.M.M. (2009) Indicadores fisiológicos da interação entre deficit hídrico e acidez do solo em cana-de-açúcar. Pesquisa Agropecuária Brasileira, 44, 1106-13. http://dx.doi.org/10.1590/S0100-204X2009000900006

Conab, C.N.A. (2018) Acompanhamento da safra brasileira: grãos. Observatorio agrícola, 6, 1-129. https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-degraos/item/ download/ 22459_07172d10b7104ce2765c1734d0f7e857

Crusciol, C.A.C., Mancuso, M.A.C., Garcia, R.A. & Castro, G.S.A. (2012) Crescimento radicular e aéreo de cultivares de arroz de terras altas em função da calagem. Bragantia, 71, 256-63. http://dx.doi.org/10.1590/S0006-87052012005000018

Cruz, F.J.R., Lobato, A.K.S., Costa, R.C.L., Lopes, M.J.S., Neves, H.K.B., Neto, C.F.O., Silva, M.H.L., Filho, B.G.S., Junior, J.A.L. & Okumura, R.S. (2011) Aluminum negative impact on nitrate reductase activity, nitrogen compounds and morphological parameters in sorghum plants. Australian Journal of Crop Science, 5, 641-45. http://www.cropj.com/june2011.html

Daubresse, C.M., Vedele, F.D., Dechorgnat, J., Chardon, F., Gaufichon, L. & Suzuki, A. (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, 105, 1141-57. https://doi.org/10.1093/aob/mcq028

Ferreira, D.F. (2011) Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35, 1039-42. https://doi.org/10.1590/S1413-70542011000600001

Good, A.G., Shrawat, A.K. & Muench, D.G. (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, 9, 597-605. https://doi.org/10.1016/j.tplants.2004.10.008

Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electrononica, 4, 1-9. https://palaeo-electronica.org/2001_1/past/past.pdf

Justino, G.C., Cambraia, J., Oliva, M.A. & Oliveira, J.A. (2006) Absorção e redução de nitrato em duas cultivares de arroz na presença de alumínio. Pesquisa Agropecuária Brasileira, 41, 1285-90. http://dx.doi.org/10.1590/S0100-204X2006000800011

Kochian, L.V., Hoekenga, O.A. & Piñeros, M.A. (2004) How Do Crop Plants Tolerate Acid Soils? Mechanisms of Aluminum Tolerance and Phosphorous Efficiency. Annual Review in Plant Biology, 55, 459-93. https://doi.org/10.1146/annurev.arplant.55.031903.141655

Kochian, L.V., Piñeros, M.A., Liu, J. & Magalhaes, J.V. (2015) Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance. Annual Review in Plant Biology, 66, 571-98. https://doi.org/10.1146/annurev-arplant-043014-114822

Liu, J., Piñeros, M.A. & Kochian, L.V. (2014) The role of aluminum sensing and signaling in plant aluminum resistance. Journal of Integrative Plant Biology, 56, 221-30. https://doi.org/10.1111/jipb.12162

Majerowicz, N., Pereira, J.M.S., Medici, L., Bison, O., Pereira, M.B. & Junior, U.M.S. (2002) Estudo da eficiência de uso do nitrogênio em variedades locais e melhoradas de milho. Revista Brasileira de Botânica, 25, 129-36. http://dx.doi.org/10.1590/S0100-84042002000200002

Mariano, E., Leite, J.M., Megda, M.X.V., Dorante, L.T. & Trivelin, P.C.O. (2015) Influence of nitrogen form supply on soil mineral nitrogen dynamics, nitrogen uptake, and productivity of sugarcane. Agronomy Journal, 107, 641-50. https://doi.org/10.2134/agronj14.0422

Maron, L.G., Kirst, M., Mao, C., Milner, M.J., Menossi, M. & Kochian, L.V. (2008) Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytologist, 179, 116-28. https://doi.org/10.1111/j.1469-8137.2008.02440.x

Masters, M.D., Black, C.K., Kantola, I.B., Woli, K.P., Voigt, T., David, M.B. & Delucia, E.H. (2016) Soil nutrient removal by four potential bioenergy crops: Zea mays, Panicum virgatum, Miscanthus × giganteus, and prairie. Agriculture Ecosystem and Environment, 216, 51-60. https://doi.org/10.1016/j.agee.2015.09.016

Menezes, C.B., Junior, G.A.C., Silva, L.A., Bernardino, K.C., Souza, F.V., Tardin, F.D. & Schaffert, R.E. (2014) Combining ability of grain sorghum lines selected for aluminum tolerance. Crop Breeding and Applied Biotechnology, 14, 42-48. https://doi.org/10.1590/S1984-70332014000100007

Mokhele, B., Zhan, X., Yang, G. & Zhang, X. (2012) Review: Nitrogen assimilation in crop plants and its affecting factors. Canadian Journal of Plant Science, 92, 399-405. https://doi.org/10.4141/cjps2011-135

Moll, R.H., Kamprath, E.J. & Jackson, W.A. (1982) Analysis and Interpretation of Factors Which Contribute to Efficiency of Nitrogen Utilization1. Agronomy Journal, 74, 562-64. https://doi.org/10.2134/agronj1982.00021962007400030037x

Pereira, A.S, Shitsuka, D.M., Parreira, F.J. & Shitsuka, R. Metodologia da Pesquisa Científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Peterson, B.G. & Carl, P. (2019). Performance Analytics: Econometric Tools for Performance and Risk Analysis. R package version 1.5.3. https://CRAN.R-project.org/package=PerformanceAnalytics

Piñeros, M.A., Shaff, J.E., Manslank, H.S., Carvalho, V.M. & Kochian, L.V. (2005) Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiology study. Plant Physiology, 137, 231-41. https://doi.org/10.1104/pp.104.047357

Purcino, A.A.C., Alves, V.M.C., Parentoni, S.N., Belele, C.L. & Loguercio, L.L. (2003) Aluminum effects on nitrogen uptake and nitrogen assimilating enzymes in maize genotypes with contrasting tolerance to aluminum toxicity. Journal of Plant Nutrition, 26, 31-61. https://doi.org/10.1081/PLN-120016496

Quintal, E.B., Magaña, C.E., Machado, I.E. & Estévez, M.M. (2017) Aluminum, a friend or foe of higher plants in acid soils. Frontiers in Plant Science, 8, 1-18. https://doi.org/10.3389/fpls.2017.01767

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Salvador, J.O., Moreira, A., Malavolta, E. & Cabral, C.P. (2000) Influência do alumínio no crescimento e na acumulação de nutrientes em mudas de goiabeira. Revista Brasileira de Ciência do Solo, 24, 787-96. http://dx.doi.org/10.1590/S0100-06832000000400011

Silva, M.J., Carneiro, P.C.S., Carneiro, J.E.S., Damasceno, C.M.B., Parrella, N.N.L.D., Pastina, M.M., Simeone, M.L.F., Schaffert, R.E. & Parrella, R.A.C. (2018) Evaluation of the potential of lines and hybrids of biomass sorghum. Industrial Crops and Products, 125, 379-85. https://doi.org/10.1016/j.indcrop.2018.08.022

Soratto, R.P., Crusciol, C.A.C. & Mello, F.F.C. (2010) Componentes da produção e produtividade de cultivares de arroz e feijão em função de calcário e gesso aplicados na superfície do solo. Bragantia, 69, 965-74. https://doi.org/10.1590/S0006-87052010000400023

Souza, L.C., Nogueira, D.C.S., Machado, L.C., Costa, T.C., Martins, J.T.S., Mendes, C.A.P., Pires, N.M.C., Neto, C.F.O., Conceicao, S.S. & Brito, A.E.A. (2016) Nitrogen compounds, proteins and amino acids in corn subjected to doses of aluminum. African Journal of Agriculture Research, 11, 1519-24. https://doi.org/10.5897/AJAR2015.10758

Souza, L.T., Cambraia, J., Ribeiro, C., Oliveira, J.A. & Silva, L.C. (2015) Effects of aluminum on the elongation and external morphology of root tips in two maize genotypes. Bragantia, 75, 19-25. http://dx.doi.org/10.1590/1678-4499.142

Techio, J.W., Escosteguy, P.A.V., Berres, D. & Zanella, S. (2012) Crescimento de híbridos de milho em solução nutritiva com alumínio. Revista de Ciências Agroveterinárias, 11, 205-12. http://www.revistas.udesc.br/index.php/agroveterinaria/article/view/5255

Vendrame, P.R.S., Brito, O.R., Guimarães, M.F., Martins, E.S. & Becquer, T. (2010) Fertility and acidity status of latossolos (oxisols) under pasture in the Brazilian Cerrado. Anais da Academia Brasileira de Ciências, 82, 1085-94. http://dx.doi.org/10.1590/S0001-37652010000400026

Vitorello, V.A., Capaldi, F.R. & Stefanuto, V.A. (2005) Recent advances in aluminum toxicity and resistance in higher plants. Brazilian Journal of Plant Physiology, 17, 129-43. http://dx.doi.org/10.1590/S1677-04202005000100011

Zhao, X.Q. & Shen, R.F. (2018) Aluminum-Nitrogen Interactions in the Soil–Plant System. Frontiers in Plant Science, 9, 1-15. https://doi.org/10.3389/fpls.2018.00807

Descargas

Publicado

27/08/2020

Cómo citar

BRIGNONI, A. S.; SILVA, H. F.; ERVILHA, J. D. C.; SILVA, F. G.; CAMARGOS, L. S.; SOUZA, L. A. Los híbridos de biomasa de sorgo difieren en crecimiento y uso de nitrógeno en baja saturación de bases en suelos arenosos. Research, Society and Development, [S. l.], v. 9, n. 9, p. e488996289, 2020. DOI: 10.33448/rsd-v9i9.6289. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6289. Acesso em: 26 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas