Uso de sorgo de biomasa para la biorremediación de ambientes contaminados con metales pesados

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i9.6770

Palabras clave:

Cobre; Fitorremediación; Níquel; Sorgo bicolor.

Resumen

Las áreas contaminadas con metales pesados son un problema recurrente en una sociedad que demanda cada vez más combustibles fósiles, pesticidas y fertilizantes. Los métodos tradicionales de recuperación de estas áreas son generalmente muy caros y la fitorremediación puede ser una solución para la descontaminación de estos ambientes, eliminando estos contaminantes del suelo, cosechando las plantas que crecen en el sitio afectado, debido a la extracción de estos elementos del suelo. La parte cosechada se puede utilizar para fines no alimentarios, como la producción de energía. En este sentido, la planta de sorgo aparece como una alternativa porque tiene una buena capacidad para acumular biomasa en un corto período de tiempo y el potencial para producir bioelectricidad. El objetivo de este estudio fue evaluar el uso de la biomasa de sorgo para la biorremediación de ambientes contaminados con metales pesados Cu y Ni. El experimento se llevó a cabo en la ciudad de Jaguariúna / SP, utilizando 4 dosis de Ni (0, 10.5, 47 y 210 mg kg-1) y Cu (0, 200, 300 y 400 mg kg-1). Las plantas de sorgo mostraron un buen desarrollo incluso con las dosis más altas de Cu y Ni aplicadas al suelo. Los niveles más altos de Cu y Ni se concentraron en las raíces. La biomasa de sorgo puede estar indicada para la fitorremediación de ambientes contaminados con Cu y Ni.

Biografía del autor/a

André May, Empresa Brasileira de Pesquisa Agropecuária Meio Ambiente

Pesquisador

Evandro Henrique Figueiredo Moura da Silva, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo

Doutorando em Engenharia de Sistemas Agrícolas

Michelli de Souza dos Santos, Empresa Brasileira de Pesquisa Agropecuária Meio Ambiente

Bolsista de Pós doutorado

Ronaldo da Silva Viana, Faculdades de Ciências Agrárias e Tecnológicas

Professor Assistente Doutor

Flávia Cristina dos Santos, Empresa Brasileira de Pesquisa Agropecuária Milho e Sorgo

Pesquisadora

Manoel Ricardo de Albuquerque Filho, Empresa Brasileira de Pesquisa Agropecuária Milho e Sorgo

Pesquisador

Citas

Accioly, A. M. A., Siqueira, J. O., Curi, N., & Moreira, F. M. S. (2004). Amenização do calcário na toxidez de zinco e cádmio para mudas de Eucalyptus camaldulensis cultivadas em solo contaminado. Revista Brasileira de Ciência do solo, 28(4), 775-783.

Andreazza, R., & Camargo, F. A de O. (2011). Fitorremediação de áreas contaminadas com cobre utilizando plantas de mamona. In: IV Salão de Ensino, UFRGS, 2011, Porto Alegre. Recuperado de <http://hdl.handle.net/10183/62888>.

Berton, R. S., Pires, A. M. M., Andrade, S. A. L. D., Abreu, C. A. D., Ambrosano, E. J., & Silveira, A. P. D. D. (2006). Toxicidade do níquel em plantas de feijão e efeitos sobre a microbiota do solo. Pesquisa Agropecuária Brasileira, 41(8), 1305-1312.

Ernst, E. (2002). Toxic heavy metals and undeclared drugs in Asian herbal medicines. Trends in pharmacological sciences, 23(3), 136-139.

Han, W. Y., Shi, Y. Z., Ma, L. F., & Ruan, J. Y. (2005). Arsenic, cadmium, chromium, cobalt, and copper in different types of Chinese tea. Bulletin of environmental contamination and toxicology, 75(2), 272-277.

Kabata-Pendias. (2011). Trace elements in soils and plants. 4th ed. Boca Raton: CRC Press

King, L.D. (1996) - Soil heavy metals. In: Alvarez, V.H.; Fontes, L.E.T. e Fontes, M.P.F. (Eds.) - O solo nos grandes domínios morfoclimáticos do Brasil e o desenvolvimento sustentado. Viçosa, SBCS, p.823-836.

Korkas, C. D., Baldi, S., Michailidis, I., & Kosmatopoulos, E. B. (2016). Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage. Applied Energy, 163, 93-104.

Maiga, A., Diallo, D., Bye, R., & Paulsen, B. S. (2005). Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. Journal of Agricultural and Food Chemistry, 53(6), 2316-2321.

Marsola, T., Miyazawa, M., & Pavan, M. A. (2005). Acumulação de cobre e zinco em tecidos do feijoeiro em relação com o extraído do solo. Revista Brasileira de Engenharia Agrícola e Ambiental, 9(1), 92-98.

May, A., da Silva, D. D., & dos Santos, F. C. (2013). Cultivo do sorgo biomassa para a cogeração de energia elétrica. Embrapa Milho e Sorgo-Documentos (INFOTECA-E).

May, A., Parrella, R. A. da C., Parrella, N. N. L. D., Schaffert, R. E., Castro, L. H. S., & Assis, R. T. Sorgo Biomassa para a Cogeração de Energia. Embrapa Milho e Sorgo, Circular Técnica, 01-7, 2015.

McDowell, L. R., Conrad, J. H., Ellis, G. L., & Loosli, J. K. (1983). Minerals for grazing ruminants in tropical regions (p. 112). Gainesville: University of Florida.

Mokhtar, H., Morad, N., & Fizri, F. F. A. (2011). Phytoaccumulation of Copper from Aqueous SolutionsUsing Eichhornia Crassipes and Centella Asiatica. International Journal of Environmental Science and Development, 2(3), 205.

Mirza, N., Mahmood, Q., Maroof Shah, M., Pervez, A., & Sultan, S. (2014). Plants as useful vectors to reduce environmental toxic arsenic content. The Scientific World Journal, 2014.

Milner, M. J., & Kochian, L. V. (2008). Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Annals of botany, 102(1), 3-13.

NRC - National Research Council. (2012). Renewable fuel standard: Potential economic and environmental effects of US biofuel policy. National Academies Press.

Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/ Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Pio, M. C. D. S., Souza, K. D. S. D., & Santana, G. P. (2013). Ability of Lemna aequinoctialis for removing heavy metals from wastewater. Acta Amazonica, 43(2), 203-210.

Pulsawat, W., Leksawasdi, N., Rogers, P. L., & Foster, L. J. R. (2003). Anions effects on biosorption of Mn (II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnology letters, 25(15), 1267-1270.

Revoredo, M. D., & Melo, W. J. D. (2006). Disponibilidade de níquel em solo tratado com lodo de esgoto e cultivado com sorgo. Bragantia, 65(4), 679-685.

Romeiro, S., Lagôa, A. M. M. A., Furlani, P. R., Abreu, C. A. D., & Pereira, B. F. F. (2007). Absorção de chumbo e potencial de fitorremediação de Canavalia ensiformes L. Bragantia,66(2), 327-334.

Römheld, V. (1991). The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. In Iron nutrition and interactions in plants (pp. 159-166). Springer, Dordrecht.

Rouch, D. A., Lee, B. T., & Morby, A. P. (1995). Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. Journal of industrial microbiology, 14(2), 132-141.

Santos, H. G., Jacomine, P. K. T., Dos Anjos, L. H. C., De Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa, 2018.

Schmitt-Jansen, M., Veit, U., Dudel, G., & Altenburger, R. (2008). An ecological perspective in aquatic ecotoxicology: Approaches and challenges. Basic and Applied Ecology, 9(4), 337-345.

Seebaugh, D. R., Goto, D., & Wallace, W. G. (2005). Bioenhancement of cadmium transfer along a multi-level food chain. Marine environmental research, 59(5), 473-491.

Zale, J., Jung, J. H., Kim, J. Y., Pathak, B., Karan, R., Liu, H., ... & Shanklin, J. (2016). Metabolic engineering of sugarcane to accumulate energy‐dense triacylglycerols in vegetative biomass. Plant biotechnology journal, 14(2), 661-669.

Zeitouni, C. F. (2003). Eficiência de espécies vegetais como fitoextratoras de cádmio, chumbo, cobre, níquel e zinco de um latossolo vermelho amarelo distrófico. Instituto agronômico, Campinas.

Descargas

Publicado

13/08/2020

Cómo citar

MAY, A.; SILVA, E. H. F. M. da; SANTOS, M. de S. dos; VIANA, R. da S.; SANTOS, F. C. dos; ALBUQUERQUE FILHO, M. R. de. Uso de sorgo de biomasa para la biorremediación de ambientes contaminados con metales pesados. Research, Society and Development, [S. l.], v. 9, n. 9, p. e95996770, 2020. DOI: 10.33448/rsd-v9i9.6770. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6770. Acesso em: 4 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas