Síndrome de Kartagener: aspectos que limitan la motilidad de los espermatozoides y la aplicabilidad de la fertilización assistida
DOI:
https://doi.org/10.33448/rsd-v9i9.7323Palabras clave:
Dineína; Inviabilidad ciliar; Ciliopatia; Infertilidad masculine; Reproducción asistida.Resumen
En vista de la relevancia del Síndrome de Kartagener (SK) para la salud masculina y la pequeña cantidad de información sobre el síndrome, esta revisión tiene como objetivo aclarar cómo ocurre el SK, su relación con la infertilidad masculina y mostrar alternativas en la reproducción asistida que ayuden a las personas infértiles. Por lo tanto, en este artículo se realizó una revisión integradora, en la que se utilizaron un total de 56 artículos científicos, en inglés, español y portugués. El SK es una condición genética autosómica recesiva caracterizada por problemas a nivel celular, por lo que los microtúbulos del citoesqueleto del flagelo y las células ciliadas exhiben anomalías que resultan en la inmotilidad de estos orgánulos. Las consecuencias de esta anomalía son la presencia de infecciones respiratorias, desde la infancia, y la infertilidad masculina con la presencia de astenozoospermia. Para superar este problema, se ha demostrado que las técnicas de reproducción asistida son muy efectivas para contribuir a la fertilidad de las personas afectadas por SK. En vista de las biotecnologías reproductivas existentes, la inyección intracitoplasmática de espermatozoides (ICSI) es hoy la mejor alternativa para hombres con astenozoospermia severa debido a SK. Sin embargo, en la mayoría de los casos, los profesionales de la salud no investigan sistemáticamente los orígenes de la infertilidad en los hombres con SK. Por tanto, se concluye que una mayor base teórica y estudios genéticos del SK es de suma importancia, con el fin de aumentar las posibilidades de un diagnóstico temprano de infertilidad en los hombres.
Citas
Antony, D., Becker-Heck, A., Zariwala, M. A., Schmidts, M., Onoufriadis, A., Forouhan, M., Wilson, R., Taylor-Cox, T., Dewar, A. & Jackson, C. (2013). Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Human Mutation, 34(3): 462- 472.
Ben-Khelifa, M., Coutton, C., Zouari, R., Karaouzène, T., Rendu, J., Bidart, M., Yassine, S., Pierre, V., Delaroche, J. & Hennebicq, S. (2014). Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. The American Journal of Human Genetics, 94(1): 95-104.
Blanchon, S., Legendre, M., Copin, B., Duquesnoy, P., Montantin, G., Kott, E., Dastot, F., Jeanson, L., Cachanado, M. & Rousseau, A. (2012). Delineation of CCDC39/CCDC40 mutation spectrum and associated phenotypes in primary ciliary dyskinesia. Journal of Medical Genetics, 49(6): 410- 416.
Carter, A. P., Diamant, A. G. & Urnavinicius, L. (2016). How dynein and dynactin transport cargos: a structural perspective. Current Opinion in Structural Biology, 37: 62-70.
Ciancio, N., Santi, M. M. de, Campisi, R., Amato, L., Martino, G. di & Maria, G. di. (2015). Kartagener’s syndrome: review of a case series. Multidisciplinary Respiratory Medicine, 10(1): 10-18.
Coutton, C., Escoffier, J., Martinez, G., Arnoult, C. & Ray, P.F. (2015). Teratozoospermia: spotlight on the main genetic actors in the human. Human Reproduction Update, 21(4): 455-485.
Crespo, M. R. P., Salto, M. F., Aguilar, R. C., Carretero, A. N., Morán, E. S., Rodríguez, S. A. & Agapito, B. P. M. (2019). Síndrome de Kartagener: diagnóstico neonatal. A propósito de un caso. Archivos Argentinos de Pediatria, 117(3): 292-296.
Ercole, F. F., Melo, L. S. D. & Alcoforado, C. L. G. C. (2014). Revisão integrativa versus revisão sistemática. Revista Mineira de Enfermagem, 18(1): 9-12.
García-Vázquez, F., Gadea, J., Matás, C. & Holt, W. (2016). Importance of sperm morphology during their transport and fertilization in mammals. Asian Journal of Andrology, 18(6): 844–850.
Geber, S., Lemgruber, M., Taitson, P.F., Valle, M. & Sampaio, M. (2011). Birth of healthy twins after intracytoplasmic sperm injection using ejaculated immotile spermatozoa from a patient with Kartagener’s syndrome. Andrologia, 44: 842-844.
Gentile, R. C. & Iomini, C. (2015). Beating cilia and whipping flagella: more than meets the eye. Journal of Pediatric Ophthalmology & Strabismus, 52(3): 139-140.
Goutaki, M., Maurer, E., Halbeisen, F.S., Amirav, I., Barbato, A., Behan, L., Boon, M., Casaulta, C., Clement, A. & Crowley, S. (2016). The international primary ciliary dyskinesia cohort (iPCD Cohort): methods and first results. European Respiratory Journal, 49(1): 1-10.
Gunes, S., Sengupta, P., Henkel, R., Alguraigari, A., Sinigaglia, M.M., Kayal, M., Joumah, A. & Agarwal, A. (2018). Microtubular dysfunction and male infertility. The World Journal of Men's Health, 38(1): 1-15.
Inaba, K. & Mizuno, K. (2015). Sperm dysfunction and ciliopathy. Reproductive Medicine and Biology, 15(2): 77-94.
Ishikawa, T. (2017). Axoneme structure from motile cilia. Cold Spring Harbor Perspectives in Biology, 9(1): 1-17.
Ji, Z.Y., Li, P., Sha, Y.W. & Ding, L. (2017). Genetic factors contributing to human primary ciliary dyskinesia and male infertility. Asian Journal of Andrology, 19(5): 515-520.
Kawasaki, A., Okamoto, H., Wada, A., Ainoya, Y., Kita, N., Maeyama, T., Edamoto, N., Nishiyama, H., Tsukamoto, S. & Joraku, A. (2015). A case of primary ciliary dyskinesia treated with ICSI using testicular spermatozoa: case report and a review of the literature. Reproductive Medicine and Biology, 14(4): 195-200.
King, S. M. (2016). Axonemal dynein arms. Cold Spring Harbor Perspectives in Biology, 8(11): 1-11.
Kobayashi, D. & Takeda, H. (2012). Ciliary motility: the components and cytoplasmic preassembly mechanisms of the axonemal dyneins. Differentiation, 83(2): 23-29.
Lehti, M. S. & Sironen, A. (2017). Formation and function of sperm tail structures in association with sperm motility defects. Biology of Reproduction, 97(4): 522-536.
Leigh, M. W., O'callaghan, C. & Knowles, M. R. (2011). The challenges of diagnosing primary ciliary dyskinesia. Proceedings of the American Thoracic Society, 8(5): 434-437.
Leigh, M. W., Hazucha, M. J., Chawla, K. K., Baker, B. R., Shapiro, A. J., Brown, D. E., Lavange, L. M., Horton, B. J., Qaqish, B. & Carson, J. L. (2013). Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia. Annals of the American Thoracic Society, 10(6): 574-581.
Leigh, M. W., Pittman, J., Carson, J. L., Ferkol, T. W., Dell, S. D., Davis, S. D., Knowles, M. R. & Zariwala, M. (2009). Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genetics in Medicine, 11(7): 473-487.
Linck, R. W., Chemes, H. & Albertini, D. F. (2016). The axoneme: the propulsive engine of spermatozoa and cilia and associated ciliopathies leading to infertility. Journal of Assisted Reproduction and Genetics, 33(2): 141-156.
Liu, B., Huang, T. & Liu, C. (2020). Kartagener syndrome. The American Journal of the Medical Sciences, 359(6): 390-391.
Liu, L. & Luo, H. (2018). Whole-exome sequencing identified a novel compound heterozygous mutation of LRRC6 in a chinese primary ciliary dyskinesia patient. Biomed Research International, 2018: 1-5.
Loges, N. T., Olbrich, H., Becker-Heck, A., Häffner, K., Heer, A., Reinhard, C., Schmidts, M., Kispert, A., Zariwala, M. A. & Leigh, M. W. (2009). Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. The American Journal of Human Genetics, 85(6): 883-889.
Lucas, J. S., Burgess, A., Mitchison, H. M., Moya, E., Williamson, M. & Hogg, C. (2014). Diagnosis and management of primary ciliary dyskinesia. Archives of Disease in Childhood, 99(9): 850-856.
Lucas, J. S. & Leigh, M. W. (2014). Diagnosis of primary ciliary dyskinesia: searching for a gold standard. European Respiratory Journal, 44(6): 1418-1422.
McCormick, J. P., Weeks, C. G., Rivers, N. J., Owen, J. D., Kelly, D. R., Rowe, S. M., Solomon, G. M., Woodworth, B. A. & Cho, D. (2019). Prevalence of chronic rhinosinusitis in bronchiectasis patients suspected of ciliary dyskinesia. International Forum of Allergy & Rhinology, 8(12): 1430-1435.
Mishra, M., Kant, S., Kumar, N., Jaiswal, A. & Verma, A. (2012). Kartagener′s syndrome: a case series. Lung India, 29(4): 366-369.
Mitchison, H. M. & Valente, E. M. (2016). Motile and non-motile cilia in human pathology: from function to phenotypes. The Journal of Pathology, 241(2): 294-309.
Montjean, D., Courageot, J., Altié, A., Amar-Hoffet, A., Rossin, B., Geoffroy-Siraudin, C., Tourame, P. & Boyer, P. (2014). Normal live birth after vitrified/warmed oocytes intracytoplasmic sperm injection with immotile spermatozoa in a patient with Kartagener's syndrome. Andrologia, 47(7): 839-845.
Mortimer, D. (2018). The functional anatomy of the human spermatozoon: relating ultrastructure and function. Mhr: Basic science of reproductive medicine, 24(12): 567-592.
Nordhoff, V. (2014). How to select immotile but viable spermatozoa on the day of intracytoplasmic sperm injection? An embryologist's view. Andrology, 3(2): 156-162.
Odate, T., Takeda, S., Narita, K. & Kawahara, T. (2015). 9 + 0 and 9 + 2 cilia are randomly dispersed in the mouse node. Microscopy, 65(2): 119-126.
Olm, M. A. K., Caldini, E. G. & Mauad, T. (2015). Diagnóstico de discinesia ciliar primária. Jornal Brasileiro de Pneumologia, 41(3): 251-263.
Ozkavukcu, S., Celik-Ozenci, C., Konuk, E. & Atabekoglu, C. (2018). Live birth after Laser Assisted Viability Assessment (LAVA) to detect pentoxifylline resistant ejaculated immotile spermatozoa during ICSI in a couple with male Kartagener’s syndrome. Reproductive Biology and Endocrinology, 16(1): 1-9.
Pennekamp, P., Menchen, T., Dworniczak, B. & Hamada, H. (2015). Situs inversus and ciliary abnormalities: 20 years later, what is the connection?. Cilia, 4(1): 1-12.
Pereira, N., O’neill, C., Lu, V., Rosenwaks, Z. & Palermo, G. D. (2017). The safety of intracytoplasmic sperm injection and long-term outcomes. Reproduction, 154(6): 61-70.
Pereira, R., Barbosa, T., Gales, L., Oliveira, E., Santos, R., Oliveira, J. & Sousa, M. (2019). Clinical and genetic analysis of children with Kartagener syndrome. Cells, 8(8): 1-19.
Proetti, S. (2018). As pesquisas qualitativa e quantitativa como métodos de investigação científica: Um estudo comparativo e objetivo. Revista Lumen-ISSN, 2(4): 2447-8717.
Rubbo, B. & Lucas, J. S. (2017). Clinical care for primary ciliary dyskinesia: current challenges and future directions. European Respiratory Review, 26(145): 1-11.
Sha, Y. W., Ding, L. & Li, P. (2014). Management of primary ciliary dyskinesia/Kartagener′s syndrome in infertile male patients and current progress in defining the underlying genetic mechanism. Asian Journal of Andrology, 16(1): 101-106.
Shoemark, A., Dixon, M., Corrin, B. & Dewar, A. (2011). Twenty-year review of quantitative transmission electron microscopy for the diagnosis of primary ciliary dyskinesia. Journal of Clinical Pathology, 65(3): 267-271.
Shoemark, A., Frost, E., Dixon, M., Ollosson, S., Kilpin, K., Patel, M., Scully, J., Rogers, A. V., Mitchison, H. M. & Bush, A. (2017). Accuracy of immunofluorescence in the diagnosis of primary ciliary dyskinesia. American Journal of Respiratory and Critical Care Medicine, 196(1): 94-101.
Simopoulou, M., Gkoles, L., Bakas, P., Giannelou, P., Kalampokas, T., Pantos, K. & Koutsilieris, M. (2016). Improving ICSI: a review from the spermatozoon perspective. Systems Biology in Reproductive Medicine, 62(6): 359-371.
Sironen, A., Shoemark, A., Patel, M., Loebinger, M. R. & Mitchison, H. M. (2019). Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cellular and Molecular Life Sciences, 1-20.
Souza Junior, P., Silva, S. S. R. & Martins, M. C. (2011). Síndrome de Kartagener em um cão (Canis lupus familiaris) da raça Cocker Spaniel Inglês. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 63(3): 768-772.
Stegen, Ç., Van Rumste, M. M. E., Mol, B. W. J. & Koks, C. A. M. (2012). The value of chromosomal analysis in oligozoospermic men. Fertility and Sterility, 98(6): 1438-1442.
Vali, R., Ghandourah, H., Charron, M., Nezhad, K. V., Omarkhail, Y., Khazaee, A., Shammas, A. & Dell, S. D. (2019). Evaluation of the pulmonary radioaerosol mucociliary clearance scan as an adjunctive test for the diagnosis of primary ciliary dyskinesia in children. Pediatric Pulmonology, 54(12): 2021-2027.
Vanaken, G. J., Bassinet, L., Boon, M., Mani, R., Honoré, I., Papon, J. F., Cuppens, H., Jaspers, M., Lorent, N. & Coste, A. (2017). Infertility in an adult cohort with primary ciliary dyskinesia: phenotype gene association. European Respiratory Journal, 50(5): 1-4.
Whitfield, M., Thomas, L., Bequignon, E., Schmitt, A., Stouvenel, L., Montantin, G., Tissier, S., Duquesnoy, P., Copin, B. & Chantot, S. (2019). Mutations in DNAH17, encoding a sperm-specific axonemal outer dynein arm heavy chain, cause isolated male infertility due to asthenozoospermia. The American Journal of Human Genetics, 105(1): 198-212.
Yuan, S., Liu, Y., Peng, H., Tang, C., Hennig, G. W., Wang, Z., Wang, L., Yu, T., Klukovich, R. & Zhang, Y. (2019). Motile cilia of the male reproductive system require miR-34/miR-449 for development and function to generate luminal turbulence. Proceedings of the National Academy of Sciences, 116(9): 3584-3593.
Zhao, W., Li, Z., Ping, P., Wang, G., Yuan, X. & Sun, F. (2017). Outer dense fibers stabilize the axoneme to maintain sperm motility. Journal of Cellular and Molecular Medicine, 22(3): 1755-1768.
Zur Lage, P., Newton, F. G. & Jarman, A. P. (2019). Survey of the ciliary motility machinery of Drosophila sperm and ciliated mechanosensory neurons reveals unexpected cell-type specific variations: a model for motile ciliopathies. Frontiers in Genetics, 10: 1-20.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Arissa Stéphane Alves de Medeiros; Pedro Ivo Raimundo da Silva; Rodrigo Tenório Padilha; Deborah de Melo Magalhães Padilha
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.