Obtención, caracterización y aplicación de un Compuesto con Resina de Poliéster y Polvo de Hoja de Carnauba

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i9.7445

Palabras clave:

Petiole powder from carnauba leaves; Polyester composite; Mechanical thermal and environmental characterizations; Solar Cooker.

Resumen

La carnauba, el árbol de la vida, es una palmera que se encuentra en todas las regiones de Brasil y tiene muchas aplicaciones, desde la electrónica hasta la cosmética, con mayor énfasis en la cera. El objetivo de esta investigación fue obtener composites utilizando fibras de pecíolos de hojas de carnauba y resina de poliéster. El polvo se obtuvo mediante trituración del forraje y posterior tamizado, generando residuos con diferentes tamaños de grano. Se ensayaron todas las granulometrías obtenidas y se eligió la más pequeña, por su mayor viabilidad para la obtención del composite, por su mejor procesabilidad. Se eligieron tres proporciones de masa de la mezcla entre matriz y residuos, 5%, 7,5% y 10%, ya que por encima de ese porcentaje hubo un compromiso en la procesabilidad y obtención del composite estudiado. Se realizaron caracterizaciones mecánicas, térmicas y ambientales que demostraron la viabilidad del compuesto propuesto. El polvo de carnauba estaba presente en el material compuesto como carga de relleno. Se eligió la mejor formulación, 10%, para hacer una parábola de una cocina solar en concentración para producir alimentos para cocinar. El composite también se puede utilizar en la fabricación de paneles decorativos para el soporte de televisores, así como en la fabricación de muebles.

Biografía del autor/a

Luiz Guilherme Meira de Souza, Universidad Federal de Rio Grande do Norte

Profe. Doctor Luiz Guilherme Meira de Souza

Egresado de la Universidad Federal de Paraíba (1980), maestría de la Universidad Federal de Rio Grande do Norte (1987) y doctorado en Ciencia e Ingeniería de Materiales de la Universidad Federal de Rio Grande do Norte (2002). Actualmente es profesor asociado de la Universidad Federal de Rio Grande do Norte. Tiene experiencia en el área de Ingeniería Mecánica, con énfasis en Aprovechamiento de Energía, actuando principalmente en los siguientes temas: fuentes alternativas, energía solar, materiales alternativos, prototipos y bajo costo.

Ricardo Fernandes de Souza, Universidad Federal de Rio Grande do Norte

Tecnólogo en Automatización Industrial por el Instituto Federal de Ciencia y Tecnología de la Educación de Rio Grande do Norte (IFRN-2011). Magíster en Ingeniería Mecánica de la Universidad Federal de Rio Grande do Norte (UFRN-2015), y egresado de Ingeniero Eléctrico de la Universidad Potiguar (UNP-2018).

Raimundo Vicente Pereira Neto, Universidade Federal do Rio Grande do Norte

Graduado en ingeniería mecánica en junio de 2019 de la Universidad Federal de Rio Grande do Norte.

Citas

Ali, A., Shaker, K., Nawab, Y., Jabbar, M., Hussain, T., Militky, J., & Baheti, V. (2018). Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles, 47(8), 2153–2183. https://doi.org/10.1177/1528083716654468.

Annamalai, M., & Ramasubbu, R. (2018). Optimizing the formulation Of E-glass fiber and cotton shell particles hybrid composites for their mechanical behavior by mixture design analysis. Materiali in Tehnologije, 52(2), 207–214. https://doi.org/10.17222/mit.2017.119

ASTM D3039/D3039M-17: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, (2017).

ASTM D7264/D7264M-15: Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, (2015).

ASTM D6110-18: Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics, ASTM International, West Conshohocken, PA, (2018).

ASTM D792-13: Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, West Conshohocken, PA, (2013).

ASTM D570-98: Standard Test Method for Water Absorption of Plastics, ASTM International, West Conshohocken, PA, (2010).

ASTM D5930-17: Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique, ASTM International, West Conshohocken, PA, 2017.

ASTM D1435-13: Standard Practice for Outdoor Weathering of Plastics, ASTM International, West Conshohocken, PA, (2013).

ASTM E2550-17: Standard Test Method for Thermal Stability by Thermogravimetry, ASTM International, West Conshohocken, PA, (2017)

ASTM E1382-97: Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis, ASTM International, West Conshohocken, PA, (2015).

Batista, W. F. (2014). Sociobiodiversidade e resgate do saber popular da comunidade rural Novo Nilo-União/Piauí-Brasil. Universidade Federal do Piauí, Departamento de Desenvolvimento e Meio Ambiente, Teresina/PI.

Bodur, M. S., Englund, K., & Bakkal, M. (2017). Water absorption behavior and kinetics of glass fiber/waste cotton fabric hybrid composites. Journal of Applied Polymer Science, 134(47), 45506. https://doi.org/10.1002/app.45506

Carvalho, L. F. (2011). Tratamentos de fibras de carnaúba [Copernicia Prunífera (miller) h.E.Moore] para o desenvolvimento de compósito biodegradável com matriz de polihidroxibutirato. Tese de Doutorado, Universidade Federal do Rio Grande do Norte, Departamento de Engenharia de Materiais, Natal/RN.

Costa, D. S., Banna, W. R., Lima, L. S., Almeida, L. M., Santos, E. d., Lopes, C. E., & Fujiyama, R. T. (2013). COMPÓSITOS POLIMÉRICOS REFORÇADO POR FIBRAS DE CARNAÚBA (Copernica prunifera). 68º Congresso da ABM. São Paulo. doi:10.5151/2594-5327-23064

Costa, L. L. (2015). Obtenção e caracterização de um compósito a base de caulim e pó da palha de carnaúba como isolante térmico. Dissertação de Mestrado, Universidade Federal do Rio Grande do Norte, Departamento de Engenharia Mecânica, Natal/RN

Djeghader, D., & Redjel, B. (2019). Effect of water absorption on the Weibull distribution of fatigue test in jute-reinforced polyester composite materials. Advanced Composites Letters, 28, 096369351985383. https://doi.org/10.1177/0963693519853833

Dong, C. (2018). Review of natural fibre-reinforced hybrid composites. Journal of Reinforced Plastics and Composites, 37(5), 331–348. https://doi.org/10.1177/0731684417745368

Düşünceli, N., Akyüz, L., Şahin, N., & Duru, H. (2019). The effect of polyurethane and carnauba wax on the mechanical and physicochemical properties of acrylonitrile butadiene nitrile rubber coating working gloves. Journal of Elastomers & Plastics, 51(1), 36–51. https://doi.org/10.1177/0095244318768650

FIlho, C. A. (2013). Desenvolvimento de compósito a partir da piaçava para construção de uma parábola de fogão solar. Tese de Doutorado, Universidade Federal do Rio Grande do Norte, Departamento de Engenharia Mecânica, Natal/RN.

Freitas, M. M. (2011). Obtenção de álcoois de cadeia longa a partir da cera da carnaúba. Dissertação de Mestrado, Universidade Federal do Ceará, Departamento de Engenharia Química, Fortaleza/CE.

Gomes, J. W., De Souza, L. G. M., De Souza Filho, L. G. V. M., & Santos, N. R. (2015). Production and characterization of polymeric composite materials using MDF waste in powder and poliester terephthalic resin. Materials Research, 18, 25–29. https://doi.org/10.1590/1516-1439.338014

Gomes, J. W., Godoi, G. S., De Souza, L. G. M., & De Souza, L. G. V. M. (2017). Absorção de água e propriedades mecânicas de compósitos poliméricos utilizando resíduos de MDF. Polimeros, 27(spe), 48–55. https://doi.org/10.1590/0104-1428.1915

Junior, A. P. (2016). Viabilidade de uso de um fogão solar com quatro focos para cocção de alimentos. Dissertação de Mestrado do PPGEM, Universidade Federal do Rio Grande do Norte, Departamento de Engenharia Mecânica , Natal/RN.

Khurshid, M. F., Hengstermann, M., Hasan, M. M. B., Abdkader, A., & Cherif, C. (2020). Recent developments in the processing of waste carbon fibre for thermoplastic composites – A review. Journal of Composite Materials, 54(14), 1925–1944. https://doi.org/10.1177/0021998319886043

Koyuncu, M., Karahan, M., Karahan, N., Shaker, K., & Nawab, Y. (2016). Static and dynamic mechanical properties of cotton/epoxy green composites. Fibres and Textiles in Eastern Europe, 24(4), 105–111. https://doi.org/10.5604/12303666.1201139

Marques, J. S. (2012). Uso do pó da palha de carnaúba em compósitos de quitosana . Dissertação de Mestrado, Universidade Federal do Rio Grande do Norte, Departamento de Engenharia Química, Natal.

Marques, J. S. (2016). Obtenção e caracterização de um compósito polimérico de matriz poliéster e reforço/carga de tecido plano de algodão. Tese de Doutorado, Universidade Federal do Rio Grande do Norte, Departamento de Engenharia Mecânica, Natal/RN.

Melo, J. D. D., Carvalho, L. F. M., Medeiros, A. M., Souto, C. R. O., & Paskocimas, C. A. (2012). A biodegradable composite material based on polyhydroxybutyrate (PHB) and carnauba fibers. Composites Part B: Engineering, 43(7), 2827–2835. https://doi.org/10.1016/j.compositesb.2012.04.046

Oliveira, F. S., Mendes, J. U. L., Costa, L. L. L., & Santos, L. M. P. (2014). Caracterização De Fibras Da Palha Da Carnaúba Para Aplicação Em Compósitos De Isolação Térmica. CBECIMAT-Congresso Brasileiro de Engenharia e Ciência dos Materiais.

Rodríguez Millán, M., Moreno, C. E., Marco, M., Santiuste, C., & Miguélez, H. (2016). Numerical analysis of the ballistic behaviour of Kevlar® composite under impact of double-nosed stepped cylindrical projectiles. Journal of Reinforced Plastics and Composites, 35(2), 124–137. https://doi.org/10.1177/0731684415608004

Saltan, F., & Akat, H. (2019). Polyhedral oligomeric silsesquioxane-based aliphatic polyester composites: Synthesis, characterization, and investigation of thermal properties. Journal of Thermoplastic Composite Materials, 089270571987520. https://doi.org/10.1177/0892705719875208

Sathishkumar, T., Naveen, J., Navaneethakrishnan, P., Satheeshkumar, S., & Rajini, N. (2017). Characterization of sisal/cotton fibre woven mat reinforced polymer hybrid composites. Journal of Industrial Textiles, 47(4), 429–452. https://doi.org/10.1177/1528083716648764

Singh, J., Kumar, M., Kumar, S., & Mohapatra, S. K. (2017, March 24). Properties of Glass-Fiber Hybrid Composites: A Review. Polymer - Plastics Technology and Engineering, Vol. 56, 455–469. https://doi.org/10.1080/03602559.2016.1233271

Souza, L. G. (2018). Efeito da hibridização de um compósito com matriz de resina poliéster e carga de tecido de fibra de algodão com uma carga de tecido de fibra de vidro tipo E a um compósito de resina poliéster e tecido de fibra de algodão. Tese de Doutorado, Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Engenharia Mecânica PPGEM, Natal/RN.

Thakur, V. K., Thakur, M. K., & Gupta, R. K. (2014, April). Review: Raw Natural Fiber-Based Polymer Composites. International Journal of Polymer Analysis and Characterization, Vol. 19, pp. 256–271. https://doi.org/10.1080/1023666X.2014.880016

Zaini, E. S., Azaman, M. D., Jamali, M. S., & Ismail, K. A. (2020). Synthesis and characterization of natural fiber reinforced polymer composites as core for honeycomb core structure: A review. Journal of Sandwich Structures and Materials, 22(3), 525–550. https://doi.org/10.1177/1099636218758589

Zhu, J., Zhu, H., Njuguna, J., & Abhyankar, H. (2013). Recent Development of Flax Fibres and Their Reinforced Composites Based on Different Polymeric Matrices. Materials, 6(11), 5171–5198. https://doi.org/10.3390/ma6115171.

Publicado

31/08/2020

Cómo citar

SOUZA, L. G. M. de .; SOUZA, R. F. de .; PEREIRA NETO, R. V. . Obtención, caracterización y aplicación de un Compuesto con Resina de Poliéster y Polvo de Hoja de Carnauba. Research, Society and Development, [S. l.], v. 9, n. 9, p. e601997445, 2020. DOI: 10.33448/rsd-v9i9.7445. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7445. Acesso em: 17 jul. 2024.

Número

Sección

Ingenierías