Membranas termosensibles basadas en redes poliméricas semi interpenetrantes de Quitosana y Poli (N-isopropilacrilamida)

Autores/as

  • Luana Aparecida Silvestre Braga Universidade Federal de Itajubá
  • Alexandre Flauzino Junior Universidade Federal de Itajubá
  • Maria Elena Leyva González Universidade Federal de Itajubá
  • Alvaro Antonio Alencar de Queiroz Universidade Federal de Itajubá

DOI:

https://doi.org/10.33448/rsd-v8i3.748

Palabras clave:

Quitosana; Poli-N-isopropilacrilamida; electrosıntesis; Membranas termosensibles.

Resumen

El presente trabajo busca desarrollar membranas termosensibles con un mecanismo inteligente de adhesión / liberación y potente acción antimicrobiana para el tratamiento de las heridas. Las membranas fueron preparadas a través de la electrossíntesis del hidrogel termossensible poli (N-isopropilacrilamida) (PNIPAm) en presencia de la quitosana (QUI). El material final constituye una red polimérica semi-interpenetrante (sIPN) de QUI y PNIPAm. La quitosana es un biopolímero natural que tiene acción bactericida, anti-inflamatoria y cicatrizante. La quitosana comercial utilizada fue previamente caracterizada en términos de su masa molar media (0,9312 * 105 g mol-1) por método viscosimétrico y grado de desacetilación (86,23%), a través de titulación conductimétrica. El hidrogel PNIPAm fue incorporado a la cadena polimérica de la QUI por vía electroquímica a través de la técnica de vueltametría cíclica. La membrana sIPN QUI-PNIPAm obtenida fue caracterizada por Espectroscopia en el infrarrojo por transformada de Fourier usando el modulo de Reflección Total Atenuada (FTIR-ATR), calorimetría exploratoria diferencial (DSC) y termogravimétrica (TG). El espectro FTIR-ATR confirmó la polimerización del PNIPAm en presencia de la QUI. La curva TG mostró que la membrana sIPN obtenida presenta una composición de 33% de quitosana y 55% de PNIPAm. El análisis térmico por DSC mostró que la Tg de la membrana sIPN QUI-PNIPAm es más baja que la Tg del hidrogel PNIPAm. La temperatura de transición de fase (LCST) de la membrana sIPN QUI-PNIPAm fue determinada por espectroscopia en la región del ultravioleta visible (UV-vis), donde el valor encontrado fue de 32ºC.

Citas

AZEVEDO, V. V. C.; et al. Quitina e Quitosana: aplicações como biomateriais. Revista Eletrônica de Materiais e Processos, v. 2.3, p. 27-34, 2007. Disponível em <http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/viewFile/46/81>. Acesso em 22 nov. 2017.

BOXIANG, W.; et al., Thermosensitive Behavior and Antibacterial Activity of Cotton Fabric Modified with a Chitosan-poly(N-isopropylacrylamide) Interpenetrating Polymer Network Hydrogel. Polymers, v. 8, n. 110, p. 2-11, 2016.

DERAKHSHANDEH, H.; et al. Trends in Biotechnology, In press, corrected proof. Disponível em <https://www.sciencedirect.com/science/article/pii/S0167779918301987>. Acesso em 10 nov. 2018.

DEKA, S. R.; et al. Magnetic nanobeads decorated by thermo-responsive PNIPAM shell as medical platforms for the efficient delivery of doxorubicin to tumour cells. Nanoscale, v. 3, p. 619-629, 2011.

FERNANDES, L. E.; et al. Caracterização de Polímeros. E-papers Serviços Editoriais Ltda., Rio de Janeiro, 2013, p. 126-149.

HEYU, L.; et al. Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials. International Journal of Pharmaceutics, v. 517, p. 135-147, 2017.

HONGQIAN, B.; et al. Thermo-Responsive Association of CS-g-PNIPAM. Journal Physics Chemistry B, v. 114, n. 32, p. 10666-10673, 2010.

LARANJEIRA, M. C. M.; FÁVARE, V. T. Quitosana: biopolímero funcional com potencial industrial biomédico. Química Nova, Florianópolis, v. 32, n. 3, p. 672-678, 2009.

MA, X. M. Restorable, high-strength poly(N-isopropylacrylamide) hydrogels constructed through chitosan-based dual macro-cross-linkers with rapid response to temperature jumps. Royal Society of Chemistry Advances, v. 7, p. 47767-47774, 2017.

MARQUES, N. N.; et al. Development of dual-sensitive smart polymers by grafting chitosan with poly(N-isopropylacrylamide): an overview. Polímeros, v. 25, n. 3, p. 237-246, 2015.

MINGZHEN, W.; et al. Preparation and properties of chitosan-poly(N-isopropylacrylamide) full-IPN hydrogels. Reactive & Functional Polymers, v. 48, p. 215-221, 2001.

RAHMAN, N. A.; et al. Modification of Chitosan for Preparation of Poly(N-isopropylacrylamide/O-nitrochitosan) Interpenetrating Polymer Network. Sains Malaysiana, v. 44, n. 7, p. 995-1001, 2015.

SANTOS, J. E. dos; et al. Caracterização de Quitosanas Comerciais de Diferentes Origens. Polímeros: Ciência e Tecnologia, v. 13, n. 4, p. 242-249, 2003.

SWEIDAN K.; et al. Further investigation on the degree of deacetylation of chitosan determined by potentiometric titration. Journal Excipients and Food Chem, v. 2, n. 1, p. 16-25, 2011.

TAVARIA, F. K.; et al. A quitosana como biomaterial odontológico: estado da arte. Revista Brasileira de Engenharia Biomédica, v. 29, n. 1, p. 110-120, 2013.

Publicado

01/01/2019

Cómo citar

BRAGA, L. A. S.; FLAUZINO JUNIOR, A.; GONZÁLEZ, M. E. L.; QUEIROZ, A. A. A. de. Membranas termosensibles basadas en redes poliméricas semi interpenetrantes de Quitosana y Poli (N-isopropilacrilamida). Research, Society and Development, [S. l.], v. 8, n. 3, p. e3883748, 2019. DOI: 10.33448/rsd-v8i3.748. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/748. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias Exactas y de la Tierra