Método de compresión y descompresión de imágenes DICOM utilizando doble cono

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i9.8032

Palabras clave:

Doble Cono; Compression; Descompresión; Codecs; DICOM.

Resumen

El aumento de información en el entorno médico provocado por las modalidades de imagen digital es notable. La búsqueda y uso de estas herramientas tecnológicas dirigidas a la medicina exigió una mayor disponibilidad de almacenamiento, generando costos crecientes. En medicina, junto con la tecnología de la información, existe un formato de imagen que se utiliza en exámenes, diagnósticos, tomografías, entre otros. Este formato, denominado DICOM, se creó con el fin de estandarizar los usos en dispositivos médicos para visualizar exámenes. Una cuestión abierta es la compresión de datos DICOM, con el fin de mantener la calidad mientras se mantienen altas tasas de compresión. Esta tesis presenta un nuevo método para la compresión y descompresión de datos DICOM mediante una función de biyector de doble cono y un códec de vídeo, denominado DC (Double Cone). Este trabajo propone 3 variaciones del método DC (DC1, DC2 y DC3). Los resultados obtenidos con la nueva técnica muestran que la compresión, aunque con pérdida, tiene una tasa de similitud muy cercana a la imagen original (SSIM = 0.99), y una relación de compresión igual a 69.51, en el mejor de los casos. La versión con mejor rendimiento fue DC2.

Citas

Aldemir, E., Tohumoglu, G., & Selver, M. A. (2019). Performance Evaluation of Lossless Compression Algorithms for Medical Images. 2019 27th Signal Processing and Communications Applications Conference (SIU) (pp. 1–4). IEEE.

Balasamy, K., & Ramakrishnan, S. (2019). An intelligent reversible watermarking system for authenticating medical images using Wavelet and PSO. Cluster Computing.

Bhagat, A. P., & Atique, M. (2012). Medical images: Formats, compression techniques and DICOM image retrieval a survey. 2012 International Conference on Devices, Circuits and Systems, ICDCS 2012.

Bross, B., Han, W. J., Ohm, J. R., Sullivan, G. J., & Wiegand, T. (2012). High efficiency video coding (HEVC) text specification, draft 8, no. JCTVC-J1003_d7, ISO/IEC Draft Int’l. Standard.

Bui, V., Chang, L. C., Li, D., Hsu, L. Y., & Chen, M. Y. (2016). Comparison of lossless video and image compression codecs for medical computed tomography datasets. Proceedings - 2016 IEEE International Conference on Big Data, Big Data 2016.

C., N. C. I. C. P. T. A. (2018). Radiology data from the clinical proteomic tumor analysisconsortium glioblastoma multiforme [cptac-gbm] collection [data set]. the cancer imagingarchive.

CAR. Canadian association of radiologists. (2011). Canada health infoway. Retrieved from https://car.ca/wp-content/uploads/Compression-in-Digital-Imaging-2011.pdf

Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., et al. (2013). The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. Journal of digital imaging, 26(6), 1045–1057. Springer.

Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: management, analysis and future prospects. Journal of Big Data.

Dubey, V. G., & Singh, J. (2012). 3D medical image compression using Huffman encoding technique. International Journal of scientific and research publications, 2(9). Citeseer.

Erickson, B., Akkus, Z., Sedlar, J., & Kofiatis, P. (2017). Data from LGG-1p19qDeletion. The Cancer Imaging Archive.

Erickson, B. J. (2002). Irreversible compression of medical images. Journal of Digital Imaging.

Gonzalez, R. C., & Woods, R. E. (2007). Digital Image Processing (3rd Edition). Prentice-Hall, Inc. Upper Saddle River, NJ, USA ©2006.

Gupta, P., Srivastava, P., Bhardwaj, S., & Bhateja, V. (2011). A modified PSNR metric based on HVS for quality assessment of color images. Proceedings of the 2011 International Conference on Communication and Industrial Application, ICCIA 2011.

Horé, A., & Ziou, D. (2010). Image quality metrics: PSNR vs. SSIM. Proceedings - International Conference on Pattern Recognition.

Huang, H. K. (2019). PACS-Based Multimedia Imaging Informatics: Basic Principles and Applications. John Wiley & Sons.

El Jaouhari, S., Gibaud, B., Lemonnier, P., Pasquier, G., Poiseau, E., Guiffard, E., Hardy, P., et al. (2019). Introduction to DICOM-RTV: a new standard for real-time video communication in hospitals. 2019 IEEE International Conference on E-Health Networking, Application and Services, HealthCom 2019.

Kadam, S., & Rathod, V. R. (2019). Medical image compression using wavelet-based fractal quad tree combined with huffman coding. Advances in Intelligent Systems and Computing.

Kasban, H., & Hashima, S. (2019). Adaptive Radiographic Image Compression Technique using Hierarchical Vector Quantization and Huffman Encoding. Journal of Ambient Intelligence and Humanized Computing.

Langer, S. G. (2011). Challenges for data storage in medical imaging research. Journal of Digital Imaging.

Lee Rodgers, J., & Alan Nice Wander, W. (1988). Thirteen ways to look at the correlation coefficient. American Statistician.

Li, M., Chen, Z., & Sun, Z. (2020). A novel approach for blind recognition of shortened RS codes.

Liu, F., Hernandez-Cabronero, M., Sanchez, V., Marcellin, M. W., & Bilgin, A. (2017). The current role of image compression standards in medical imaging. Information (Switzerland).

Liu, W., & Lin, W. (2013). Additive white gaussian noise level estimation in SVD domain for images. IEEE Transactions on Image Processing.

De Macedo, D. D. J., Von Wangenheim, A., & Dantas, M. A. R. (2015). A Data Storage Approach for Large-Scale Distributed Medical Systems. Proceedings - 2015 9th International Conference on Complex, Intelligent, and Software Intensive Systems, CISIS 2015.

Mauro, B. (2006). Document and image compression. CRC press.

Mrak, M., Grgic, S., & Grgic, M. (2003). Picture quality measures in image compression systems. The IEEE Region 8 EUROCON 2003. Computer as a Tool. (Vol. 1, pp. 233–236). IEEE.

N. Baraskar, T., & R. Mankar, V. (2020). The DICOM Image Compression and Patient Data Integration using Run Length and Huffman Encoder. Coding Theory.

Ndong, B., Diop, O., Bathily, E. H. A. L., Mbodj, M., Gassama, S. S., Mboup, M. L., Tall, K., et al. (2015). JPEG2000 compression for scintigraphic images of metastasis of the prostatic cancer. 2015 2nd World Symposium on Web Applications and Networking, WSWAN 2015.

Parikh, S. S., Ruiz, D., Kalva, H., Fernandez-Escribano, G., & Adzic, V. (2018). High Bit-Depth Medical Image Compression with HEVC. IEEE Journal of Biomedical and Health Informatics.

Pole, A., & Shriram, R. (2018). 3-D Medical Image Compression by Using HEVC. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA) (pp. 1–5). IEEE.

Rahmat, R. F., Andreas, T. S. M., Fahmi, F., Pasha, M. F., Alzahrani, M. Y., & Budiarto, R. (2019). Analysis of dicom image compression alternative using huffman coding. Journal of Healthcare Engineering.

Ridley, E. (1997). Universities collaborate on de facto standard for lossy compression. Telemedicine and Telehealth Networks, 3(6).

Russo, F. (2003). A method for estimation and filtering of Gaussian noise in images. IEEE Transactions on Instrumentation and Measurement, 52(4), 1148–1154. IEEE.

Saraiva, A. A., Castro, F. M. J., Costa, N. J. C., Sousa, J. V. M., Ferreira, N. M. F., Valente, A., & Soares, S. (2019). Comparative Study of Compression Techniques Applied in Different Biomedical Signals. BIOSIGNALS (pp. 132–138).

Saravanan, C., & Ponalagusamy, R. (2009). Lossless grey-scale image compression using source symbols reduction and Huffman coding. International Journal of Image Processing (IJIP), 3(5), 246.

Schlupkothen, F. R. N. (2012). Interoperability between medical image archives and consumer devices through web services. Digest of Technical Papers - IEEE International Conference on Consumer Electronics.

Schmainda, K. M., & Prah, M. (2018). Data from brain-tumor-progression. The Cancer Imaging Archive.

Shaiboun, M. M., & Shaheen, M. (2016). Streaming medical images using video compression. 2016 IEEE Symposium on Computers and Communication (ISCC) (pp. 125–128). IEEE.

Singh, A., Khehra, B. S., & Kohli, G. K. (2019). Differential Huffman Coding Approach for Lossless Compression of Medical Images. International Conference on Intelligent Computing and Communication (pp. 579–589). Springer.

Tackie Ammah, P. N., & Owusu, E. (2019). Robust medical image compression based on wavelet transform and vector quantization. Informatics in Medicine Unlocked.

Toh, K. K. V., & Isa, N. A. M. (2010). Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Processing Letters.

Venkat, R. A., & Vaidyanathan, C. (2019). Lossless Video Compression Using Bayesian Networks and Entropy Coding. 2019 IEEE Region 10 Symposium (TENSYMP) (pp. 254–259). IEEE.

Wang, C., Yan, Z., Pedrycz, W., Zhou, M., & Li, Z. (2020). A weighted fidelity and regularization-based method for mixed or unknown noise removal from images on graphs. IEEE Transactions on Image Processing, 29, 5229–5243. IEEE.

Wong, S., Huang, H. K., Zaremba, L., & Gooden, D. (1995). Radiologic Image Compression—A Review. Proceedings of the IEEE.

Zheng, T.-L., Zhu, G.-Y., Wang, Y., Zhao, X.-Y., Li, Y.-Y., & Zhao, L. (2019). A Hybrid Method for Medical Image Compression in Mobile Picture Archiving and Communication System. Journal of Medical Imaging and Health Informatics, 9(7), 1401–1406. American Scientific Publishers.

Descargas

Publicado

11/09/2020

Cómo citar

SARAIVA, A. A. .; OLIVEIRA, M. S. de .; BATISTA NETO, J. . Método de compresión y descompresión de imágenes DICOM utilizando doble cono. Research, Society and Development, [S. l.], v. 9, n. 9, p. e882998032, 2020. DOI: 10.33448/rsd-v9i9.8032. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8032. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias Exactas y de la Tierra