Influencia del embalaje en la calidad poscosecha de las hoja de bebé de berro de tierra
DOI:
https://doi.org/10.33448/rsd-v9i10.8870Palabras clave:
Barbarea verna; Almacenamiento; Vida útil; Polietileno; Compuestos bioactivos; Capacidad antioxidante.Resumen
En el presente estudio se investigaron variaciones a lo largo del almacenamiento, en la calidad poscosecha de las hojas tiernas de berro de tierra envasadas en diferentes paquetes. El uso de envases PET PCR demostró no ser factible para el almacenamiento refrigerado de hoja de bebé, mientras que los envases zip lock de polietileno de 100 µm y polietileno de baja densidad sellado de 50 µm demostraron ser buenas opciones. A continuación, el experimento se llevó a cabo utilizando los paquetes zip lock de polietileno de 100 µm y polietileno de baja densidad sellado de 50 µm, bajo una temperatura de refrigeración promedio de 6ºC ± 1 y una humedad relativa de 87% ± 1,6. Las muestras se evaluaron en los tiempos 0, 2, 4, 6, 8, 10 y 12 días. Los análisis realizados fueron porcentaje de pérdida de masa, monitoreo de CO2 dentro del empaque, color, pH, acidez titulable, clorofila total, carotenoides totales, contenido fenólico total y capacidad antioxidante. El empaque zip lock de polietileno de 100µm determinó menor acumulación de CO2, mayor preservación del color verde, mayor estabilización en la degradación de carotenoides y menor agotamiento de la capacidad antioxidante de la hoja bebé de berro. Estos resultados sugieren que el empaque zip lock de polietileno de 100 µm proporciona mejores condiciones de almacenamiento, dando a la hoja bebé de berro una vida útil de hasta 12 días, asegurando un producto de calidad para el consumidor.
Citas
AOAC (Association Of Official Analytical Chemistry). (2012). Official methods of analysis. (19a ed.), Gaithersburg.
Auzanneau, N., Weber, P., Kosińska-Cagnazzoa, A., Andlauera, W (2018). Bioactive compounds and antioxidant capacity of Lonicera caerulea berries: Comparison of seven cultivars over three harvesting years. Journal of Food Composition and Analysis, 66, 81-89.
Bergquist, S. A. M., Gertsson, E. U., Olsson, M. E. (2006). Influence growth stage and postharvest storage on ascorbic acid and carotenoid content and visual quality of baby spinach (Spinacia oleracea L.). Journal Science Food Agriculture, 86, 346–355.
Boz, Z., Welt, B. A., Brecht, J. K., Pelletier, W., Mclamore, E. (2018). Review of Challenges and Advances in Modification of Food Package Headspace Gases. Journal of Applied Packaging Research, 10, (1), 62-97.
Cefola, M., Pace, B. (2015). Application of Oxalic Acid to Preserve the Overall Quality of Rocket and Baby Spinach Leaf during Storage. Journal of Food Processing and Preservation, 39, (6), 2523-2532.
Choe, U., Yu, L., Wang, T. T. Y. (2018). The Science Behind Microgreens As An Exciting New Food For The 21th Century. Journal of Agricultural and Food Chemistry, 66, 11519-11530.
Chitarra, M. I. F, Chitarra, A. B. (2005). Pós-colheita de frutas e hortaliças: fisiologia e manuseio. Lavras: UFLA.
Di Gioia, F. Renna, M., Santamaria, P. (2017). Chapter 11- Sprouts, Microgreens and “Baby Leaf” Vegetables. Minimally Processed Refrigerated Fruits and Vegetables. Estados Unidos: Springer, 411-428.
Fadda, A., Bernardo, P., Angioni, A., Barberis, A., Cefola, M. (2015). Suitability for ready-to-eat processing and preservation of six green and red baby leaf cultivars and evaluation of their antioxidant value during storage and after the expiration date. Journal of Food Processing and Preservation, 40, 550–558.
Ferreira, D. F. (2000). Análises estatísticas por meio do SISVAR para windows versão 4.0. In: Reunião Anual Da Região Brasileira Da Sociedade Internacional De Biometria. Anais...São Carlos: UFSCar. 235.
Kader, A. A. (2002). Postharvest technology of horticultural crops. Agriculture and Natural Resources: University of California.
Laorko, A, Tongchitpakdee, S., Youravong, W. (2013). Storage quality of pineapple juice non-thermally pasteurized and clarified by microfiltration. Journal of Food Engineering, 116, 554-561.
Lee, J. S., Lee, Y. (2012). Effect of Packaging Methods on Postharvest Quality of Tah Tasai Chinese Cabbage (Brassica campestris var. narinosa) Baby Leaf Vegetable. The Korean Society of Food Preservation, 19, 1-6.
Martínez-Sánchez, A., Lunaa, M. C., Selmaa, M. V., Tudelaa, J. A., Abad, J, Gil, M. I. (2012). Baby-leaf and multi-leaf of green and red lettuces are suitable raw material for fresh cut industry. Postharvest Biology and Technology, 63, 1-10.
Mudau, A. R., Araya, H. T., Mudua, F. N. (2018). The quality of baby spinach as affected by developmental stage as well as postharvest storage conditions. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 1-10.
Novo, M. C. S., Prela-Pantano, A., Deuber, R., Torres, R. B., Trani, P. E., Bron, I. U. (2011). Caracterização morfológica e da coloração de folhas de couve do banco de germoplasma do Instituto Agronômico de Campinas. Recuperado de <http://www.infobibos.com/Artigos/2011_1/couve/index.htm>.
Oliveira, A, Castro, P. M., Amaro, A. L, Sain, J., Pintado, M. (2016). Optimization of Temperature, Relative Humidity and Storage Time before and after Packaging of Baby Spinach Leaf Using Response Surface Methodology. Food and Bioprocess Technology, 9, 2070–2079.
Paradiso, V. M., et al (2018). Nutritional characterization and shelf-life of packaged microgreens. Food & Function, 8, 5629–5640.
Prieto, P., Pineda, M., Aguilar, M (1999). Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E1. Analytical Biochemistry, Bethesda, 269, 337–341.
Rodriguez-Amaya, D. B. (2001). A guide to carotenoid analysis in foods. Washington: Internacional Life Sciences Institute Press, 64-65.
Rufino, M. S. M., et al (2010). Bioactive compounds and antioxidante capacities of 18 no-traditional tropical fruits from Brazil. Food Chemistry,121, 996-1002.
Solovchenko, A., Yahia, E. M., Chen, C. (2019). Chapter 11 - Pigments. Postharvest Physiology and Biochemistry of Fruits and Vegetables, Woodhead Publishing:Reino Unido, 252 – 252.
Xiao, Z., Lester, G. E., Luo, Y., Wang, Q (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal Agriculture Food Chemical, 60, 7644–7651.
Xiao, Z., Luo, Y., Lester, G. E., Kou, L., Yang, T., Wang, Q. (2014). Postharvest quality and shelf life of radish microgreens as impacted by storage temperature, packaging film, and chlorine wash treatment. LWT - Food Science and Technology, 55 (2), 551-558.
Yahia, E. M., García-Solís, P., Celis, M. E. M. (2019). Chapter 2 - Contribution of Fruits and Vegetables to Human Nutrition and Health. Postharvest Physiology and Biochemistry of Fruits and Vegetables, Woodhead Publishing:Reino Unido, 19-45.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Ana Beatriz Silva Araújo; Elisângela Elena Nunes Carvalho; Eduardo Valério de Barros Vilas Boas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.