Modelo de Poisson y sus generalizaciones aplicadas a datos de dengue, Brasil
DOI:
https://doi.org/10.33448/rsd-v9i10.8874Palabras clave:
DENV; Predictor lineal; Diseminación; Modelado.Resumen
Objetivo: analizar y comparar el comportamiento semanal de los casos de dengue en los cinco municipios más poblados de las mesorregiones de Pernambucana, a saber, Caruaru, Palmares, Recife, Petrolina y Serra Talhada. Método: se utilizaron los registros epidemiológicos semanales de dengue, de 2009 a 2018, disponibles a través del Servicio de Información Ciudadana (SIC). Se aplicaron modelos de probabilidad, más precisamente, los modelos de Poisson y sus generalizaciones. Resultados: el modelo Binomial Negativo se destacó en relación al Modelo Quasi-Poisson, reduciendo los parámetros de dispersión con mayor precisión debido a la naturaleza de los datos sobredispersos. Además, los análisis indicaron que la precipitación y la temperatura fueron factores importantes que afectaron el número de casos en algunos municipios. Conclusión: la modelización la ha convertido en una herramienta útil para que las autoridades locales planifiquen la toma de decisiones y la intervención en los períodos más propicios de proliferación.
Citas
Baracho, R. C. M., Ismael Filho, A., Gonçalves, A., Nunes, S. T. S., & Borges, P. F. (2014). A influência climática na proliferação da dengue na cidade de Areia, Paraíba. Revista Gaia Scientia, 8(1).
Barbosa, I. R., & da Silva, L. P. (2015). Influência dos determinantes sociais e ambientais na distribuição espacial da dengue no município de Natal-RN. Revista Ciência Plural, 1(3), 62-75.
Bickel, P. J. & Doksum, K. A. (2001). Mathematical statistics: Basic ideas and selected topics. 2nd ed. Prentice–Hall.
Böhm, A. W., Costa, C. D. S., Neves, R. G., Flores, T. R., & Nunes, B. P. (2016). Dengue incidence trend in Brazil, 2002-2012. Epidemiologia e Serviços de Saúde, 25(4), 725-733. Doi: http://dx.doi.org/10.5123/s1679-49742016000400006.
Catão, R. de C. (2011). Dengue no Brasil: abordagem geográfica na escala nacional.
Ceratti, R. K. (2013). Modelos para análise de dados não-normais multivariados longitudinais.
Costa, I. M. P., & Calado, D. C. (2016). Incidência dos casos de dengue (2007-2013) e distribuição sazonal de culicídeos (2012-2013) em Barreiras, Bahia. Epidemiologia e Serviços de Saúde, 25, 735-744. Doi: http://dx.doi.org/10.5123/s1679-49742016000400007.
de Andrade Oliveira, M. A. C., Coelho, F. A., de Barros Freitas, R., TAVARES, A. P., Silva, Í. N. D. P. N., da Silva Pinto, S., & Andrade, F. M. (2018). Perfil das notificações de dengue e sazonalidade no município de Ubá-MG, 2015 A 2016. Revista Científica FAGOC-Saúde, 2(2), 9-14.
de Freitas, J. R., Nascimento, G. I. L. A., de Almeida Ferreira, D. S., Santiago, E. J. P., Moreira, G. R., da Silva, A. S. A., & Cunha Filho, M. (2020). Análise espaço-temporal da incidência de febre Chikungunya no estado de Pernambuco. Research, Society and Development, 9(9), e288997114-e288997114. Doi: http://dx.doi.org/10.33448/rsd-v9i9.7114
de Freitas, J. R., Santiago, E. J. P., de Freitas, J. C. R., da Silva, A. S. A., de Araújo Filho, R. N., Piscoya, V. C., & Cunha Filho, M. (2020). Space-temporal analysis trend of the numbers of dengue cases in Pernambuco-Brazil. Research, Society and Development, 9(7), 526974427. Doi: http://dx.doi.org/10.33448/rsd-v9i7.4427
de Moura, P. M., Docile, T. N., Arnóbio, A., & Figueiró, R. (2014). O Desmatamento e o Crescimento urbano desordenado no estado do Rio de Janeiro: impactos na dinâmica do Dengue. Cadernos UniFOA, 9(24),77-85, 2014.
IBGE. Estimativas da população. (2018). Disponível em: hhttps://www.ibge.gov.br/estatisticas-novoportal/sociais/populacao/9103-estimativas-depopulacao.html?=&t=downloadsi. Acesso em: 21/08/2019.
Kraemer, M.U.G., SinKA, M.E., Duda, K.A., Mylne, A., Shearer, F.M., Barker, C., Moore, C.G., Carvalho, R.G., Coelho, G.E., Van Bortel, W., Hendrickx, G., Schaffner, F., Elyazar, I.R.F., Teng, H.-J., Brady, O.J., Messina. J.P., Pigott, D.M., Scott, T.W., Smith, D.L., Wint, G.R.W., Golding, N., & Hay, S.I. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife, 4, e08347. Doi: 10.1038/sdata.2015.35
Leslie, C. (2019). Statistical Analysis of Climate Factors Influencing Dengue Incidences in Colombo, Sri Lanka: Poisson and Negative Bionomial Regression Approach. International Journal of Scientific and Research Publications (IJSRP), 9(2), 133-144. Doi: http://dx.doi.org/10.29322/IJSRP.9.02.2019.p8616.
Magalhães, M. N. (2006). Probabilidade e variáveis aleatórias. Edusp.
Maniero, V. C., Santos, M. O., Ribeiro, R. L., de Oliveira, P. A., da Silva, T. B., Moleri, A. B., & Cardozo, S. V. (2016). Dengue, chikungunya e zika vírus no brasil: situação epidemiológica, aspectos clínicos e medidas preventivas. Almanaque multidisciplinar de pesquisa, 1(1).
Mustafa, M. S., Rasotgi, V., Jain, S., & Gupta, V. (2015). Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Medical journal armed forces India, 71(1), 67-70. Doi: https://doi.org/10.1016/j.mjafi.2014.09.011
Nelder, J.A., & Wedderburn, R.W.M. (1972). Generalized linear models. Journal of the Royal Statistical Society, A 135, 370-384.
Pereira, A. S.; Shitsuka, D. M.; Parreira, F. J.; Shitsuka, R (2018). Metodologia da pesquisa científica. 1. Ed. Santa Maria, RS: UFSM, NTE.
Paula, G. A. (2004). Modelos de regressão: com apoio computacional. São Paulo: IME-USP.
Ramalho, J. Modelos de regressão para dados de contagem. 1996. Dissertação de Mestrado.
Rao, CR (1973) Linear statistical inference and its applications. New York, John Wiley. 560p.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. URL http://www.R-project.org/.
Sippy, R., Herrera, D., Gaus, D., Gangnon, R. E., Patz, J. A., & Osorio, J. E. (2019). Seasonal patterns of dengue fever in rural Ecuador: 2009-2016. PLoS neglected tropical diseases, 13(5), e0007360. Doi: https://doi.org/10.1371/journal.pntd.0007360
Salles, T. S., da Encarnação Sá-Guimarães, T., de Alvarenga, E. S. L., Guimarães-Ribeiro, V., de Meneses, M. D. F., de Castro-Salles, P. F., & Moreira, M. F. (2018). History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: a review. Parasites & vectors, 11(1), 264. Doi: https://doi.org/10.1186/s13071-018-2830-8
Tadano, Y. de S., Ugaya, C. M. L., & Franco, A. T. A. (2009). Método de regressão de Poisson: metodologia para avaliação do impacto da poluição atmosférica na saúde populacional. Ambiente & Sociedade, 12(2), 241-255. Doi: https://doi.org/10.1590/S1414-753X2009000200003.
Valle, D., Pimenta, D. N., & da Cunha, R. V. (2015). Dengue: teorias e práticas. SciELO-Editora FIOCRUZ. Doi: https://doi.org/10.1590/0102-311X00016216.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Jucarlos Rufino de Freitas; Marília Gabriela Ferreira de Miranda Oliveira; Moacyr Cunha Filho; Frank Sinatra Gomes da Silva; Josimar Mendes de Vasconcelos
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.