Efecto de la terapia con láser sobre la osteogénesis en defectos de la escutelaria rellenos con cemento α-TCP y gránulos β-TCP/HA: modelo animal
DOI:
https://doi.org/10.33448/rsd-v9i10.9061Palabras clave:
Terapia por láser; Terapia por luz de baja intensidad; Osteogénesis; Ratas; Materiales biocompatibles.Resumen
La irradiación láser de bajo nivel (LLLI) modula varios procesos biológicos como la proliferación y diferenciación celular, estimulando la cicatrización de los tejidos. El objetivo fue evaluar, mediante un análisis histomorfométrico, el proceso de osteogénesis en defectos realizados en el cráneo de ratas rellenas de biomateriales y sometidas a radiación láser infrarroja (GaAIAs). Se utilizaron treinta ratas Wistar macho, cuyo peso varió entre 250gr y 300gr, distribuidas aleatoriamente en 2 grupos, Test Group (GT) y Control Group (CG). Ambos grupos tuvieron 3 tiempos de observación, 7, 14 y 21 días, formando 6 subgrupos. Se realizaron dos defectos de 4 mm de diámetro en los huesos parietales y una de las cavidades se injertó con el biomaterial α-TCP y la otra con β-TCP / HA. Los grupos de prueba recibieron terapia con láser de bajo nivel (LLLI), en espectro infrarrojo (λ = 830nm, 2 J/cm2, 90mW, 27s). En los grupos de control se realizó todo el protocolo quirúrgico, pero sin aplicación de láser. El protocolo de la terapia láser se estableció cada 48 horas, comenzando inmediatamente después de la cirugía y continuando en intervalos hasta el sexto día postoperatorio. Los animales se sacrificaron los días 7, 14 y 21. El análisis histomorfométrico mostró que hay biomodulación ósea positiva evidenciada en los grupos de prueba, con un resultado significativo a los 21 días. El grupo de prueba con β-TCP / HA mostró un área más grande de trabéculas óseas que los grupos de control. Se puede concluir que la terapia con láser, en el protocolo establecido, actúa como biomodulador óseo, estimulando la osteogénesis en las áreas injertadas, pudiendo utilizarse como coadyuvante en el proceso de reparación ósea.
Citas
Bosco, A. F., Faleiros, P. L., Carmona, L. R., Garcia, V. G., Theodoro, L. H., de Araujo, N. J., ... & de Almeida, J. M. (2016). Effects of low-level laser therapy on bone healing of critical-size defects treated with bovine bone graft. Journal of Photochemistry and Photobiology B: Biology, 163, 303-310.
Diker, N., Aytac, D., Helvacioglu, F., Dagdelen, C., & Oguz, Y. (2019). Evaluation of the Effects of Low-Level Laser Therapy on Diabetic Bone Healing. Journal of Craniofacial Surgery, 30(7), 1994-1998.
Eski, M., Cil, Y., Ayhan, O., Ilgan, S., & Sengezer, M. (2005). Assessment of Distraction Regenerate Using Quantitative Bone Scintigraphy: P10. Plastic and Reconstructive Surgery, 116(3), 131-132.
Khadra, M., Lyngstadaas, S. P., Haanæs, H. R., & Mustafa, K. (2005). Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials, 26(17), 3503-3509.
Kurashina, K., Kurita, H., Hirano, M., De Blieck, J. M. A., Klein, C. P. A. T., & De Groot, K. (1995). Calcium phosphate cement: in vitro and in vivo studies of the α-tricalcium phosphate-dicalcium phosphate dibasic-tetracalcium phosphate monoxide system. Journal of Materials Science: Materials in Medicine, 6(6), 340-347.
Li, Y., Weng, W., & Tam, K. C. (2007). Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate. Acta Biomaterialia, 3(2), 251-254.
Macedo, N. L. D., Matuda, F. D. S., Macedo, L. G. S. D., Gonzales, M. B., Ouchi, S. M., & Carvalho, Y. R. (2004). Bone defect regeneration with bioactive glass implantation in rats. Journal of Applied Oral Science, 12(2), 137-143.
Marzouk, K. M., Gamal, A. Y., Al-Awady, A. A., & Sharawy, M. M. (2007). Osteoconductive effects of vinyl styrene microbeads in rat calvarial defects. Journal of oral and maxillofacial surgery, 65(8), 1508-1516.
Mulliken, J. B., & Glowacki, J. (1980). Induced osteogenesis for repair and construction in the craniofacial region. Plastic and reconstructive surgery, 65(5), 553-560.
Nasr, H. F., Aichelmann-Reidy, M. E., & Yukna, R. A. (1999). Bone and bone substitutes. Periodontology 2000, 19, 74.
Ohura, K., Bohner, M., Hardouin, P., Lemaître, J., Pasquier, G., & Flautre, B. (1996). Resorption of, and bone formation from, new β‐tricalcium phosphate‐monocalcium phosphate cements: An in vivo study. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 30(2), 193-200.
Peterson, L., Ellis III, E., Hupp, J., & Tucker, M. (2003). Cirurgia Oral e Maxilofacial Contemporânea. 4ºed.
Pinheiro, A. L. B., & Gerbi, M. E. M. (2006). Photoengineering of bone repair processes. Photomedicine and Laser Therapy, 24(2), 169-178.
Pinheiro, A. L. B., Limeira Júnior, F. D. A., Gerbi, M. E. M., Ramalho, L. M. P., Marzola, C., Ponzi, E. A. C., ... & Gonçalves, T. O. (2003). Effect of 830-nm laser light on the repair of bone defects grafted with inorganic bovine bone and decalcified cortical osseus membrane. Journal of Clinical Laser Medicine & Surgery, 21(5), 301-306.
Pouremadi, N., Motaghi, A., Safdari, R., Zarean, P., Rashad, A., Zarean, P., & Aminy, S. (2019). Clinical outcomes of low-level laser therapy in management of advanced implant surgery complications: A comparative clinical study. J Contemp Dent Pract, 20(1), 78-82.
Roberts, W.E., Garetto, L.P. (2000). Fisiologia e Metabolismo Ósseos. In: MISCH, CE. Implantes dentários contemporâneos. 2. ed. São Paulo: Santos, 225-237.
Shiratori, K., Matsuzaka, K., Koike, Y., Murakami, S., Shimono, M., & Inoue, T. (2005). Bone formation in β-tricalcium phosphate-filled bone defects of the rat femur: Morphometric analysis and expression of bone related protein mRNA. Biomedical Research, 26(2), 51-59.
Silva, R. V., & Camilli, J. A. (2006). Repair of bone defects treated with autogenous bone graft and low-power laser. Journal of Craniofacial Surgery, 17(2), 297-301.
Weber, J. B. B., Pinheiro, A. L. B., Oliveira, M. G. D., Oliveira, F. A. M., & Ramalho, L. M. P. (2006). Laser therapy improves healing of bone defects submitted to autologus bone graft. Photomedicine and Laser Surgery, 24(1), 38-44.
Zein, R., Selting, W., & Benedicenti, S. (2017). Effect of low-level laser therapy on bone regeneration during osseointegration and bone graft. Photomedicine and laser surgery, 35(12), 649-658.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 André Luiz Marinho Falcão Gondim; Gustavo Augusto Seabra Barbosa; Wagner Ranier Maciel Dantas; Euler Maciel Dantas; Henrique Telles Ramos de Oliveira; Luis Ferreira de Almeida Neto; Karolina Pires Marcelino; Rogério Miranda Pagnoncelli
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.