Curcumina promueve la apoptosis extrínseca en células de osteosarcoma canino

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i10.9231

Palabras clave:

Citotoxicidad; D-17; Inmunocitoquímica; Muerte celular.

Resumen

El osteosarcoma canino es el tumor óseo más común en perros. Tiene una intensa capacidad metastásica y la supervivencia del paciente es baja en esta enfermedad. La curcumina, el compuesto más importante derivado de la planta Curcuma longa L., ha sido ampliamente estudiado y ha mostrado efectos antineoplásicos considerables contra varios tumores. Este estudio tiene como objetivo identificar la activación de proteínas específicas de las vías de apoptosis, supervivencia tumoral y mal pronóstico de esta enfermedad en células OSC del linaje D-17. Para ello, las células se cultivaron y trataron con curcumina a concentraciones de 20 μM, 50 μM y 100 μM en portaobjetos, que se prepararon y fijaron. Posteriormente, se realizó la técnica de inmunocitoquímica con anticuerpos anti-caspasa3, anti-JNK, anti-AMPK, anti-p53, anti-AKT y anti-mTOR. Se observó que la curcumina activó en células de osteosarcoma canino in vitro las proteínas de muerte celular caspasa-3, JNK y AMPK, redujo la expresión de la proteína p53 mutada y no alteró las proteínas AKT y mTOR. Así, se encontró que la curcumina promueve la apoptosis extrínseca mediada por caspasa, JNK y cAMP / AMPK en células de osteosarcoma canino. Además, tiene el potencial de mejorar el pronóstico tumoral de esta enfermedad al inactivar el p53 mutado. Sin embargo, no interfiere con la expresión de AKT / mTOR, relacionada con la proliferación y supervivencia tumoral. Tales resultados servirán de base para futuros estudios que analicen el efecto de la curcumina in vivo sobre esta enfermedad.

Citas

Amarante-Mendes G. P., & Green DR. (1999). The regulation of apoptotic cell death. Braz J Med Biol Res. 32:1053-61.

Anand P., Sundaram C., Jhurani S., Kunnumakkara A. B., & Aggarwal BB. (2008). Curcumin and cancer: an "old-age" disease with an "age-old" solution. Cancer Lett. 267:133-164.

Arnhold E. (2013). Package in the R environment for analysis of variance and complementary analyses. Brazilian Journal of Veterinary Research and Animal Science. 50(6):488-492.

Ashour A. A., Abdel-Aziz A. A., Mansour A. M., Alpay S. N., Huo L., & Ozpolat B. (2014). Targeting elongation factor-2 kinase (eEF-2K) induces apoptosis in human pancreatic câncer cells. Apoptosis. 19:241-258.

Balasubramanian S., & Eckert R. L. (2007). Curcumin suppresses AP1 transcription factor-dependent differentiation and activates apoptosis in human epidermal keratinocytes. J. Biol. Chem. 282:6707-6715.

Behrens A., Jochum W., Sibilia M., & Wagner E. F. (2000). Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene. 19(22):2657.

Cavalcanti J. N., Amstalden E. M. I., Guerra J. L., & Magna L. C. (2004). Osteossarcoma em cães: estudo clínico-morfológico e correlação prognóstica. Brazilian Journal of Veterinary Research and Animal Science. 41(5):299- 305.

Chin K. V., Yang W. L., Ravatn R., Kita T., Reitman E., Vettori D., Cvijic M. E., Shin M., & Iacono L. (2002). Reinventing the wheel of cyclic AMP: novel mechanisms of cAMP signaling. Ann N Y Acad Sci. 968:49-64.

Collett G. P., & Campbell F. C. (2004). Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis. 25(11):183-2189.

De Smaele, E., Zazzeroni, F., Papa, S., Nguyen, D. U., Jin, R., Jones, J., & Franzoso, G. (2001). Induction of gadd45 β by NF-κ B downregulates pro-apoptotic JNK signalling. Nature. 414(6861):308-313.

Fan, T. J., Han, L. H., Cong, R. S., & Liang, J. (2005). Caspase family proteases and apoptosis. Acta biochimica et biophysica Sinica. 37(11):719-727.

Fedchenko N., & Reifenrath J. (2014). Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue–a review. Diagnostic pathology. 9(1):221.

Fitzgibbons P. L., Dillon D. A., Alsabeh R., Berman M. A., Hayes D. F., Hicks D. G., Hughes K. S., & Nofech-Mozes S. (2014). Template for reporting results of biomarker testing of specimens from patients with carcinoma of the breast. Arch Pathol Lab Med. 138:595-601.

Fridman J. S., & Lowe S. W. (2003). Control of apoptosis by p53. Oncogene. 22:9030-9040.

Galluzzi, L., Kepp, O., & Kroemer, G. (2016). Mitochondrial regulation of cell death: a phylogenetically conserved control. Microbial Cell. 3(3):101.

George P. (2011). p53 how crucial is its role in cancer. Int J Curr Pharm Res. 3:19-25.

Gopal P. K., Paul M., & Paul S. (2014). Curcumin induces caspase mediated apoptosis in JURKAT cells by disrupting the redox balance. Asian Pac J Cancer Prev. 15(1):93-100.

Greenblatt M. S., Bennett W. P., & Hollstein M. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54:4855-4878.

Guo H., Xu Y. M., Ye Z. Q., Yu J. H., & Hu X. Y. (2013). Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IκBα, c-Jun and androgen receptor. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 68(6), 431-434.

Hasima, N., & Aggarwal, B. B. (2012). Cancer-linked targets modulated by curcumin. International journal of biochemistry and molecular biology. 3(4):328.

Hu S., Xu Y., Meng L., Huang L., & Sun H. (2018). Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Experimental and therapeutic medicine. 16(2):1266-1272.

Itahana K., Dimri G., & Campisi J. (2001). Regulation of cellular senescence by p53. Eur J Biochem. 268:2784-2791.

Jin Y., Tipoe G. L., Liong E. C., Lau T. Y. H., Fung P. C. W., & Leung K. M. (2001). Overexpression of BMP-2/4, −5 and BMPR-IA associated with malignancy of oral epithelium. Oral Oncol. 37:225-233.

Johnson A. S., Couto C. G., & Weghorst C. M. (1998). Mutation of the p53 tumor suppressor gene in spontaneously occurring osteosarcomas of the dog. Carcinogênese. 19:213-217.

Jordan B. C., Mock C. D., Thilagavathi R., & Selvam C. (2016). Molecular mechanisms of curcumin and its semisynthetic analogues in prostate cancer prevention and treatment. Life Sci. 152:135-144.

Khan, A. Q., Siveen, K. S., Prabhu, K. S., Kuttikrishnan, S., Akhtar, S., Shaar, A., & Uddin, S. (2018). Curcumin-mediated degradation of S-phase kinase protein 2 induces cytotoxic effects in human papillomavirus-positive and negative squamous carcinoma cells. Frontiers in Oncology. 8:399.

Kim E. K., & Choi E. J. (2010). Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 1802:396-405.

Kirpensteijn J., Kik M., Teske E., & Rutteman G. R. (2008). TP53 gene mutations in canine osteosarcoma. Veterinary Surgery. 37(5), 454-460.

Li J., Xiang S., Zhang Q., Wu J., Tang Q., Zhou J., Yang L., Chen Z., & Hann S. S. (2015). Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-kappaB/p65 and MUC1-C. J Exp Clin Cancer Res. 34:46.

Lim W., Jeong M., Bazer F. W., & Song G. (2016). Curcumin suppresses proliferation and migration and induces apoptosis on human placental choriocarcinoma cells via ERK1/2 and SAPK/JNK MAPK signaling pathways. Biology of reproduction. 95(4), 83-1.

Mirabello, L. J., Yeager, M., Mai, P. L., Gastier-Foster, J., Gorlick, R., Khanna, C., & Wunder, J. S. (2015). High prevalence of germline TP53 mutations in young osteosarcoma cases. 75:5574.

Moragoda L., Jaszewski R., & Majumdar A. P. (2001). Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res. 21:873-878.

National Center for Biotechnology Information. (2020). PubChem Database. Compound Summary: Curcumin. https://pubchem.ncbi.nlm.nih.gov/compound/Curcumin. Accessed June 04.

Pan, W., Yang, H., Cao, C., Song, X., Wallin, B., Kivlin, R., & Wan, Y. (2008). AMPK mediates curcumin-induced cell death in CaOV3 ovarian cancer cells. Oncology reports. 20(6):1553-1559.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.[e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio. ufsm. br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica. pdf.

Prokocimer M., & Rotter V. (1994). Structure and function of p53 in normal cells and their aberrations in cancer cells: projection on the hematologic cell lineages. Blood. 84:2391-3411.

Qian Y., & Chen X. (2013). Senescence regulation by the p53 protein family. Methods Mol Biol. 965:37-61.

Ray R. M., Jin S., Bavaria M. N., & Johnson L. R. (2011). Regulation of JNK activity in the apoptotic response of intestinal epithelial cells. American Journal of Physiology. 300(5):761-770.

Sappayatosok K., Maneerat Y., Swasdison S., Viriyavejakul P., Dhanuthai K., Zwang J., & Chaisri U. (2009). Expression of pro-inflammatory protein, iNOS, VEGF and COX-2 in oral squamous cell carcinoma (OSCC), relationship with angiogenesis and their clinico-pathological correlation. Med Oral Patol Oral Cir Bucal. 14:E319-E324.

Shackelford R. E., Kaufmann W. K., & Paules R. S. (1999). Cell cycle, checkpoint mechanism, and genotoxic stress. Environ Health Perspect. 107:5-24.

Szewczyk M., Lechowski R., & Zabielska K. (2015). What do we know about canine osteosarcoma treatment? Review. Veterinary Research Communications. 39(1):61-67.

Tait, S. W., & Green, D. R. (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nature reviews Molecular cell biology. 11(9):621-632.

Tang G., Minemoto Y., Dibling B., Purcell N. H., Li Z., Karin M., & Lin A. (2001). Inhibition of JNK activation through NF-κ B target genes. Nature. 414(6861), 313-317.

Team RC. (2013). R: A language and environment for statistical computing.

Teiten M. H., Gaascht F., Cronauer M., Henry E., Dicato M., & Diederich M. (2011). Anti-proliferative potential of curcumin in androgen-dependent prostate cancer cells occurs through modulation of the Wingless signaling pathway. Int J Oncol. 38(3):603-611.

Tomeh M. A., Hadianamrei R., & Zhao X. (2019). A review of curcumin and its derivatives as anticancer agents. International journal of molecular sciences. 20(5):1033-1058.

Torlakovic E. E., Riddell R., Banerjee D., El-Zimaity H., Pilavdzic D., Dawe P., Magliocco A., Barnes P., Berendt R., Cook D., Gilks B., Williams G., Perez-Ordonez B., Wehrli B., Swanson P. E., Otis C. N., Nielsen S., Vyberg M., & Butany J. (2010). Canadian Association of Pathologists-Association canadienne des pathologistes National Standards Committee/Immunohistochemistry: best practice recommendations for standardization of immunohistochemistry tests. Am J Clin Pathol. 133:354-365.

Tsuchiya T., Sekine K. I., Hinohara S. I., Namiki T., Nobori T., & Kaneko Y. (2000). Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genetics and Cytogenetics. 120(2):91–98.

Vallianou N. G., Evangelopoulos A., Schizas N., & Kazazis C. (2015). Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res. 35:645-651.

Van Leeuwen, I. S., Cornelisse, C. J., Misdorp, W., Goedegebuure, S. A., Kirpensteijn, J., & Rutteman, G. R. (1997). P53 gene mutations in osteosarcomas in the dog. Cancer letters. 111(1-2):173-178.

Yang C. W., Chang C. L., Lee H. C., Chi C. W., Pan J. P., & Yang W. C. (2012). Curcumin induces the apoptosis of human monocytic leukemia THP-1 cells via the activation of JNK/ERK pathways. BMC complementary and alternative medicine. 12(1):1-8.

Yu T., Ji J., & Guo Y. L. (2013). MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells. Biochemical and biophysical research communications. 441(1):53-58.

Yu, S., Shen, G., Khor, TO, Kim, JH, & Kong, AN (2008). A curcumina inibe Akt / alvo mamífero da sinalização da rapamicina através do mecanismo dependente da proteína fosfatase. Molecular cancer therapeutics. 7(9):2609-2620.

Zhang, C., Hao, Y., Wu, L., Dong, X., Jiang, N., Cong, B., & Zhao, X. (2018). Curcumin induces apoptosis and inhibits angiogenesis in murine malignant mesothelioma. International journal of oncology. 53(6):2531-2541.

Zhu G. H., Dai H. P., Shen Q., Ji O., Zhang Q., & Zhai Y. L. (2016). Curcumin induces apoptosis and suppresses invasion through MAPK and MMP signaling in human monocytic leukemia SHI-1 cells. Pharmaceutical biology. 54(8):1303-1311.

Zhu, G. H., Zhang, Q., Dai, H. P., Jl, O., & Shen, Q. (2013). Molecular mechanism of SHI-1 cell apoptosis induced by Puerariae Radix flavones in vitro. Zhongguo shi yan xue ye xue za zhi. 21(6):1423-1428.

Descargas

Publicado

16/10/2020

Cómo citar

SOARES, N. P. .; NEPOMUCENO, L. L. .; CRUZ, V. de S. .; ARNHOLD, E. .; VIEIRA, V. de S. .; BORGES, J. C. de A. .; PEREIRA, D. K. S.; PEREIRA, K. F.; ARAÚJO, E. G. de . Curcumina promueve la apoptosis extrínseca en células de osteosarcoma canino. Research, Society and Development, [S. l.], v. 9, n. 10, p. e7289109231, 2020. DOI: 10.33448/rsd-v9i10.9231. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9231. Acesso em: 23 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas