Evaluación del la rugosidad de alambres de NiTi cuando son expuestos a solución fluorada
DOI:
https://doi.org/10.33448/rsd-v9i11.9480Palabras clave:
Alambres para ortodoncia; Saliva; Flúor.Resumen
Los alambres de níquel-titanio son una gran preocupación debido al alto índice de níquel y la posible liberación de este cuando son expuestos principalmente al flúor. Así, el objetivo fue evaluar la rugosidad de los alambres de níquel-titanio (NiTi) utilizados en el tratamiento ortodóntico cuando son expuestos a la solución fluorada. Los alambres fueron divididos en grupos de acuerdo con su composición (Flexy NiTi Super Elástico, Flexy NiTi Thermal 35°, Flexy NiTi Copper e Flexy Blue-Ti), tiempo (0 días - T0, 7 días – T1, 14 días – T2 y 28 días – T3) e inmersión (solución de saliva artificial o solución de saliva artificial más solución de fluoruro). Para la prueba de rugosidad fueron utilizados segmentos rectos (24 mm de longitud) de cada alambre, con velocidad constante de 0,25 mm/s, longitud de 2,5 mm y cut-off de 0,25 mm. La rugosidad de superficie de cada alambre de ortodoncia fue resultado del promedio de las tres lecturas. Los valores obtenidos fueron sometidos a la prueba de normalidad de Kolmogorov-Smirnov, seguidos del análisis de varianza para la comparación entre diferentes tiempos y prueba t de Student para comparar la diferencia de tiempos para cada grupo y en la comparación entre grupos. No hubo diferencia estadísticamente significativa de la rugosidad intra e intergrupal entre las diferentes composiciones, tiempos e inmersión. La utilización de flúor a una concentración de 0,2% una vez a la semana no provocó alteraciones significativas en cuanto a la rugosidad de superficie de los alambres utilizados.
Citas
Albuquerque, C. G. D., Correr, A. B., Venezian, G. C., Santamaria Jr, M., Tubel, C. A., & Vedovello, S. A. S. (2017). Deflection and flexural strength effects on the roughness of aesthetic-coated orthodontic wires. Brazilian Dental Journal, 28(1), 40-45.
Bandeira, A. M. B., dos Santos, M. P. A., Pulitini, G., Elias, C. N., & da Costa, M. F. (2011). Influence of thermal or chemical degradation on the frictional force of an experimental coated NiTi wire. The Angle Orthodontist, 81(3), 484-489.
Bogdanski, D., Köller, M., Müller, D., Muhr, G., Bram, M., Buchkremer, H. P., & Epple, M. (2002). Easy assessment of the biocompatibility of Ni–Ti alloys by in vitro cell culture experiments on a functionally graded Ni–NiTi–Ti material. Biomaterials, 23(23), 4549-4555.
Cioffi, I., Piccolo, A., Tagliaferri, R., Paduano, S., Galeotti, A., & Martina, R. (2012). Pain perception following first orthodontic archwire placement-Thermoelastic vs superelastic alloys: A randomized controlled trial. Quintessence international, 43(1), 61–69.
Fidalgo, T. K. D. S., Pithon, M. M., Maciel, J. V. B., & Bolognese, A. M. (2011). Friction between different wire bracket combinations in artificial saliva: an in vitro evaluation. Journal of Applied Oral Science, 19(1), 57-62.
Huang, H. H. (2002). Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomaterials, 23(1), 59-63.
Huang, H. H. (2003). Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva. Journal of Biomedical Materials Research Part A, 66(4), 829-839.
Huang, H. H. (2005). Variation in corrosion resistance of nickel-titanium wires from different manufacturers. The Angle Orthodontist, 75(4), 661-665.
Kao, C. T., & Huang, T. H. (2010). Variations in surface characteristics and corrosion behaviour of metal brackets and wires in different electrolyte solutions. The European Journal of Orthodontics, 32(5), 555-560.
Kim, M. J., Lim, B. S., Chang, W. G., Lee, Y. K., Rhee, S. H., & Yang, H. C. (2005). Phosphoric acid incorporated with acidulated phosphate fluoride gel etchant effects on bracket bonding. The Angle Orthodontist, 75(4), 678-684.
Kwon, Y. H., Cheon, Y. D., Seol, H. J., Lee, J. H., & Kim, H. I. (2004). Changes on NiTi orthodontic wired due to acidic fluoride solution. Dental Materials Journal, 23(4), 557-565.
Kwon, Y. H., Cho, H. S., Noh, D. J., Kim, H. I., & Kim, K. H. (2005). Evaluation of the effect of fluoride‐containing acetic acid on NiTi wires. Journal of Biomedical Materials Research Part B: Applied Biomaterials 72(1), 102-108.
Kwon, Y. H., Jang, C. M., Jang, J. H., Park, J. H., Kim, T. H., & Kim, H. I. (2008). Effect of fluoride released from fluoride-containing dental restoratives on NiTi orthodontic wires. Dental Materials Journal, 27(1), 133-138.
Lausmaa, J., Kasemo, B., & Hansson, S. (1985). Accelerated oxide growth on titanium implants during autoclaving caused by fluorine contamination. Biomaterials, 6(1), 23-27.
Lin, H., Bowers, B., Wolan, J. T., Cai, Z., & Bumgardner, J. D. (2008). Metallurgical, surface, and corrosion analysis of Ni-Cr dental casting alloys before and after porcelain firing. Dental Materials, 24(3), 378-385.
Lin, J., Han, S., Zhu, J., Wang, X., Chen, Y., Vollrath, O., & Mehl, C. (2012). Influence of fluoride-containing acidic artificial saliva on the mechanical properties of Nickel-Titanium orthodontics wires. Indian Journal of Dental Research, 23(5), 591-595.
Locci, P., Lilli, C., Marinucci, L., Calvitti, M., Belcastro, S., Bellocchio, S., & Becchetti, E. (2000). In vitro cytotoxic effects of orthodontic appliances. Journal of Biomedical Materials Research, 53(5), 560-567.
Nakagawa, M., Matsuya, S., & Udoh, K. (2002). Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys. Dental Materials Journal, 21(2), 83-92.
Nakagawa, M., Matsuya, S., Shiraishi, T., & Ohta, M. (1999). Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. Journal of Dental Research, 78(9), 1568-1572.
Perinetti, G., Contardo, L., Ceschi, M., Antoniolli, F., Franchi, L., Baccetti, T., & Di Lenarda, R. (2012). Surface corrosion and fracture resistance of two nickel-titanium-based archwires induced by fluoride, pH, and thermocycling. An in vitro comparative study. The European Journal of Orthodontics, 34(1), 1-9.
Prososki, R. R., Bagby, M. D., & Erickson, L. C. (1991). Static frictional force and surface roughness of nickel-titanium arch wires. American Journal of Orthodontics and Dentofacial Orthopedics, 100(4), 341-348.
Schiff, N., Grosgogeat, B., Lissac, M., & Dalard, F. (2002). Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials, 23(9), 1995-2002.
Schmit, J. L., Staley, R. N., Wefel, J. S., Kanellis, M., Jakobsen, J. R., & Keenan, P. J. (2002). Effect of fluoride varnish on demineralization adjacent to brackets bonded with RMGI cement. American Journal of Orthodontics and Dentofacial Orthopedics, 122(2), 125-134.
Tecco, S., Tetè, S., & Festa, F. (2009). Friction between archwires of different sizes, cross-section and alloy and brackets ligated with low-friction or conventional ligatures. The Angle Orthodontist, 79(1), 111-116.
Walker, M. P., White, R. J., & Kula, K. S. (2005). Effect of fluoride prophylactic agents on the mechanical properties of nickel-titanium-based orthodontic wires. American Journal of Orthodontics and Dentofacial Orthopedics, 127(6), 662-669.
Watanabe, I., & Watanabe, E. (2003). Surface changes induced by fluoride prophylactic agents on titanium-based orthodontic wires. American Journal of Orthodontics and Dentofacial Orthopedics, 123(6), 653-656.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Lucineide Lima dos Santos; Eloisa Aparecida Carlesse Paloco; Sandrine Bittencourt Berger; Flaviana Alves Dias; Débora Fernandes Giuliangeli; Júlia Graciela Monteiro dos Santos; Lucia Gloria Diana Aguilar Pizzurno; Ricardo Danil Guiraldo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.