Evaluación del la rugosidad de alambres de NiTi cuando son expuestos a solución fluorada

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.9480

Palabras clave:

Alambres para ortodoncia; Saliva; Flúor.

Resumen

Los alambres de níquel-titanio son una gran preocupación debido al alto índice de níquel y la posible liberación de este cuando son expuestos principalmente al flúor. Así, el objetivo fue evaluar la rugosidad de los alambres de níquel-titanio (NiTi) utilizados en el tratamiento ortodóntico cuando son expuestos a la solución fluorada. Los alambres fueron divididos en grupos de acuerdo con su composición (Flexy NiTi Super Elástico, Flexy NiTi Thermal 35°, Flexy NiTi Copper e Flexy Blue-Ti), tiempo (0 días - T0, 7 días – T1, 14 días – T2 y 28 días – T3) e inmersión (solución de saliva artificial o solución de saliva artificial más solución de fluoruro). Para la prueba de rugosidad fueron utilizados segmentos rectos (24 mm de longitud) de cada alambre, con velocidad constante de 0,25 mm/s, longitud de 2,5 mm y cut-off de 0,25 mm. La rugosidad de superficie de cada alambre de ortodoncia fue resultado del promedio de las tres lecturas. Los valores obtenidos fueron sometidos a la prueba de normalidad de Kolmogorov-Smirnov, seguidos del análisis de varianza para la comparación entre diferentes tiempos y prueba t de Student para comparar la diferencia de tiempos para cada grupo y en la comparación entre grupos. No hubo diferencia estadísticamente significativa de la rugosidad intra e intergrupal entre las diferentes composiciones, tiempos e inmersión. La utilización de flúor a una concentración de 0,2% una vez a la semana no provocó alteraciones significativas en cuanto a la rugosidad de superficie de los alambres utilizados.

Citas

Albuquerque, C. G. D., Correr, A. B., Venezian, G. C., Santamaria Jr, M., Tubel, C. A., & Vedovello, S. A. S. (2017). Deflection and flexural strength effects on the roughness of aesthetic-coated orthodontic wires. Brazilian Dental Journal, 28(1), 40-45.

Bandeira, A. M. B., dos Santos, M. P. A., Pulitini, G., Elias, C. N., & da Costa, M. F. (2011). Influence of thermal or chemical degradation on the frictional force of an experimental coated NiTi wire. The Angle Orthodontist, 81(3), 484-489.

Bogdanski, D., Köller, M., Müller, D., Muhr, G., Bram, M., Buchkremer, H. P., & Epple, M. (2002). Easy assessment of the biocompatibility of Ni–Ti alloys by in vitro cell culture experiments on a functionally graded Ni–NiTi–Ti material. Biomaterials, 23(23), 4549-4555.

Cioffi, I., Piccolo, A., Tagliaferri, R., Paduano, S., Galeotti, A., & Martina, R. (2012). Pain perception following first orthodontic archwire placement-Thermoelastic vs superelastic alloys: A randomized controlled trial. Quintessence international, 43(1), 61–69.

Fidalgo, T. K. D. S., Pithon, M. M., Maciel, J. V. B., & Bolognese, A. M. (2011). Friction between different wire bracket combinations in artificial saliva: an in vitro evaluation. Journal of Applied Oral Science, 19(1), 57-62.

Huang, H. H. (2002). Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomaterials, 23(1), 59-63.

Huang, H. H. (2003). Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva. Journal of Biomedical Materials Research Part A, 66(4), 829-839.

Huang, H. H. (2005). Variation in corrosion resistance of nickel-titanium wires from different manufacturers. The Angle Orthodontist, 75(4), 661-665.

Kao, C. T., & Huang, T. H. (2010). Variations in surface characteristics and corrosion behaviour of metal brackets and wires in different electrolyte solutions. The European Journal of Orthodontics, 32(5), 555-560.

Kim, M. J., Lim, B. S., Chang, W. G., Lee, Y. K., Rhee, S. H., & Yang, H. C. (2005). Phosphoric acid incorporated with acidulated phosphate fluoride gel etchant effects on bracket bonding. The Angle Orthodontist, 75(4), 678-684.

Kwon, Y. H., Cheon, Y. D., Seol, H. J., Lee, J. H., & Kim, H. I. (2004). Changes on NiTi orthodontic wired due to acidic fluoride solution. Dental Materials Journal, 23(4), 557-565.

Kwon, Y. H., Cho, H. S., Noh, D. J., Kim, H. I., & Kim, K. H. (2005). Evaluation of the effect of fluoride‐containing acetic acid on NiTi wires. Journal of Biomedical Materials Research Part B: Applied Biomaterials 72(1), 102-108.

Kwon, Y. H., Jang, C. M., Jang, J. H., Park, J. H., Kim, T. H., & Kim, H. I. (2008). Effect of fluoride released from fluoride-containing dental restoratives on NiTi orthodontic wires. Dental Materials Journal, 27(1), 133-138.

Lausmaa, J., Kasemo, B., & Hansson, S. (1985). Accelerated oxide growth on titanium implants during autoclaving caused by fluorine contamination. Biomaterials, 6(1), 23-27.

Lin, H., Bowers, B., Wolan, J. T., Cai, Z., & Bumgardner, J. D. (2008). Metallurgical, surface, and corrosion analysis of Ni-Cr dental casting alloys before and after porcelain firing. Dental Materials, 24(3), 378-385.

Lin, J., Han, S., Zhu, J., Wang, X., Chen, Y., Vollrath, O., & Mehl, C. (2012). Influence of fluoride-containing acidic artificial saliva on the mechanical properties of Nickel-Titanium orthodontics wires. Indian Journal of Dental Research, 23(5), 591-595.

Locci, P., Lilli, C., Marinucci, L., Calvitti, M., Belcastro, S., Bellocchio, S., & Becchetti, E. (2000). In vitro cytotoxic effects of orthodontic appliances. Journal of Biomedical Materials Research, 53(5), 560-567.

Nakagawa, M., Matsuya, S., & Udoh, K. (2002). Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys. Dental Materials Journal, 21(2), 83-92.

Nakagawa, M., Matsuya, S., Shiraishi, T., & Ohta, M. (1999). Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. Journal of Dental Research, 78(9), 1568-1572.

Perinetti, G., Contardo, L., Ceschi, M., Antoniolli, F., Franchi, L., Baccetti, T., & Di Lenarda, R. (2012). Surface corrosion and fracture resistance of two nickel-titanium-based archwires induced by fluoride, pH, and thermocycling. An in vitro comparative study. The European Journal of Orthodontics, 34(1), 1-9.

Prososki, R. R., Bagby, M. D., & Erickson, L. C. (1991). Static frictional force and surface roughness of nickel-titanium arch wires. American Journal of Orthodontics and Dentofacial Orthopedics, 100(4), 341-348.

Schiff, N., Grosgogeat, B., Lissac, M., & Dalard, F. (2002). Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials, 23(9), 1995-2002.

Schmit, J. L., Staley, R. N., Wefel, J. S., Kanellis, M., Jakobsen, J. R., & Keenan, P. J. (2002). Effect of fluoride varnish on demineralization adjacent to brackets bonded with RMGI cement. American Journal of Orthodontics and Dentofacial Orthopedics, 122(2), 125-134.

Tecco, S., Tetè, S., & Festa, F. (2009). Friction between archwires of different sizes, cross-section and alloy and brackets ligated with low-friction or conventional ligatures. The Angle Orthodontist, 79(1), 111-116.

Walker, M. P., White, R. J., & Kula, K. S. (2005). Effect of fluoride prophylactic agents on the mechanical properties of nickel-titanium-based orthodontic wires. American Journal of Orthodontics and Dentofacial Orthopedics, 127(6), 662-669.

Watanabe, I., & Watanabe, E. (2003). Surface changes induced by fluoride prophylactic agents on titanium-based orthodontic wires. American Journal of Orthodontics and Dentofacial Orthopedics, 123(6), 653-656.

Publicado

04/11/2020

Cómo citar

SANTOS, L. L. dos .; PALOCO, E. A. C.; BERGER, S. B.; DIAS, F. A.; GIULIANGELI, D. F.; SANTOS, J. G. M. dos .; PIZZURNO, L. G. D. A.; GUIRALDO, R. D. Evaluación del la rugosidad de alambres de NiTi cuando son expuestos a solución fluorada. Research, Society and Development, [S. l.], v. 9, n. 11, p. e559119480, 2020. DOI: 10.33448/rsd-v9i11.9480. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9480. Acesso em: 15 ene. 2025.

Número

Sección

Ciencias de la salud