Biodegradación de atrazina, glifosato y pendimetalina empleando consorcios de hongos
DOI:
https://doi.org/10.33448/rsd-v9i11.9679Palabras clave:
Degradación; Plaguicidas; Hongos; Suelos agrícolas.Resumen
El objetivo del presente estudio fue evaluar la biorremediación de suelos contaminados artificialmente con atrazina, glifosato y pendimetalina empleando consorcios de hongos en los procesos de biodegradación, en microcosmos. La biodegradación se evaluó mediante respiración microbiana durante un período de 15 días y análisis de genotoxicidad en raíces de Allium cepa expuestas a muestras de elutriados en concentraciones de cero y 50 μg mL-1 de los herbicidas después del proceso de biodegradación. Los resultados fueron sometidos a análisis de varianza, prueba de Tukey y prueba de Fischer (p <0.05%) para comparación de medias. El consorcio Aspergillus fumigatus - Penicillium citrinum tiene una mayor capacidad para degradar la atrazina, sin embargo, hay inhibición del metabolismo en presencia de glifosato y pendimetalina. Existe un retraso en el índice mitótico en las células meristemáticas de las raíces de Allium cepa expuestas a los elutriados en la concentración 50 μg mL-1 de atrazina y pendimetalina. Existe una alteración celular en la fase de metafase de las células expuestas a elutriatos en la concentración de 50 μg mL-1 de los tres herbicidas. Los cambios ocurridos son bajos, lo que indica que hay una degradación de parte de los herbicidas.
Citas
Agência Nacional de Vigilância Sanitária. Processo nº 25351.056754/2013-17. (2020). Retrieved from http://portal.anvisa.gov.br/documents/10181/5344168/18.+PTR+m utagenicidade.pdf/beba21d1-510a-439c-83e2-5e92cdec05eb
Bonfleur, E. J., Tornisielo, V. L., Regitano, J. B. & Lavorenti, A. (2015). The Effects of Glyphosate and Atrazine Mixture on Soil Microbial Population and Subsequent Impacts on Their Fate in a Tropical Soil. Water Air Soil Pollut, 226(21). http://doi.org/10.1007/s11270-014-2190-8
Castro-Gutiérrez, V., Masís-Mora, M., Caminal, G., Vicent, T., Carazo Rojas, E., Mora-López, M. & Rodríguez-Rodríguez, C. E. (2016). A microbial consortium from a biomixture swiftly degrades highconcentrations of carbofuran in fluidized bed reactors. Process Biochemistry, 51(10), 1585-1593. http://doi.org/10.1016/j.procbio.2016.07.003
Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C. & Liu, Y. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chemical Engineering Journal, 284, 582–598. http://doi.org/10.1016/j.cej.2015.09.001
Coelho, E. R. C. & Bernardo, L. D. (2017). Presença e remoção de atrazina, desetilatrazina, desisopropilatrazina e desetilhidroxiatrazina em instalação piloto de ozonização e filtração lenta. Engenharia Sanitária e Ambiental, 22(4), 789-796. http://doi.org/10.1590/s1413-41522017147638
Dias, M. G., Canto-Dorow, T. S., Coelho, A. P. D., & Tedesco, S. B. (2014). Efeito genotóxico e antiproliferativo de Mikania cordifolia (L. F.) Willd. (Asteraceae) sobre o ciclo celular de Allium cepa L. Revista brasileira de plantas medicinais, 16(12), 202-208. https://doi.org/10.1590/S1516-05722014000200006
Felisbino, K., Santos-Filho, R., Piancini, L. D. S., Cestari, M. M. & Leme, D. M. (2018). Mesotrione herbicide does not cause genotoxicity, but modulates the genotoxic effects of Atrazine when assessed in mixture using a plant test syst em (Allium cepa). Pesticide Biochemistry and Physiology, 150, 83-85. https://doi.org/10.1016/j.pestbp.2018.07.009
Ferreira, D. F. (2019). Sisvar: A computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. https://doi.org/10.2 8951/rbb.v37i4.450
Freitas, L. A., Rambo, C. L., Franscescon F., Barros, A. F. P., Lucca, G. S., Siebel, A. M., Scapinello, J., Lucas, E. M. & Dal Magro. J. (2017). Coal extraction causes sediment toxicity in aquatic environments in Santa Catarina, Brazil. Revista Ambiente & Água, 12(4). https://doi.org/10.4136/ambi-agua.2036
Geed, S. R., Prasad, S., Kureel, M. K., Singh, R. S. & Rai, B. N. (2018). Biodegradation of wastewater in alternating aerobic-anoxic lab scale pilot plant by Alcaligenes sp. S3 isolated from agricultural field. Journal of Environmental Management, 214, 408-415. https://doi.org/10.1016/j.jenvman.2018.03.031
Góngora-Echeverría, V. R., García-Escalante, R., Rojas-Herrera, R., Giácoman-Vallejos, G. & Ponce-Caballero, C. (2020). Pesticide bioremediation in liquid media using a microbial consortium and bacteria-pure strains isolated from a biomixture used in agricultural areas. Ecotoxicology and Environmental Safety, 200, 110734. https://doi.org/10.101 6/j.ecoenv.2020.110734
Gupta, J., Rathour, R., Singh, R., & Thakur, I. S. (2019). Production and characterization of extracellular polymeric substances (EPS) generated by a carbofuran degrading strain Cupriavidus sp. ISTL7. Bioresource Technology, 282, 417-424. https://doi.org/10.1016/j.biortech.2019.03.054
Kanagaraj, J., Senthilvelan, T., & Panda, R. C. (2015). Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Technologies and Environmental Policy, 17(6), 1443-1456. https://doi.org/10.1007/s10098-014-0869-6
Kočárek, M., Artikov, H., Voříšek, K. & Borůvka, L. (2016). Pendimethalin Degradation in Soil and Its Interaction with Soil Microorganisms. Soil and Water Research, 11(4), 213-219. https://doi.org/10.17221/226/2015-SWR
Kpagh, J., Sha’ato, R., Wuana, R. A. & Tor-Anyiin, T.A. (2016). Kinetics of Sorption of Pendimethalin on Soil Samples Obtained from the Banks of Rivers Katsina-Ala and Benue, Central Nigeria. Journal of Geoscience and Environment Protection, 4, 37-42. https://doi.org/10.4236/gep.2016.41004
Lira, R. K. S., & Orlanda, J. F. F. (2020). Biodegradation of the carbofuran insecticide by Syncephalastrum racemosum. Research, Society and Development, 9(7), 1-13. DOI: http://dx.doi.org/10.33448/rsd-v9i7.4932
Quintella, C. M., Mata, A. M. T., & Lima, L. C. P. (2019). Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils. Journal of Environmental Economics and Management. 241, 156–166. https://doi.org/10.1016/j.jenvman.2019.04.019
Saez, J. M., Aparicio, J. D., Amoroso, M. J., & Benimeli, C. S. (2015). Effect of the acclimation of a Streptomyces consortium on lindane biodegradation by free and immobilized cells. Process Biochemistry, 50, 1923-1933. https://doi.org/10.1016/j.procbio.2015.08.014
Santos, J. F. L, Bispo R. B, Santos, L. C. B. & Karsburg, I. V. (2020). Avaliação do potencial citogenotóxico de extrato aquoso da folha de Valeriana officinalis L. Brazilian Journal of Development, 6(5), 26982-26993. https://doi.org/10.34117/bjdv6n5-229
Silveira, G. L., Lima, M. G. F., Reis, G. B., Palmieri, M. J. & Andrade-Vieria, L. F. (2017). Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere, 178, 359–367. https://doi.org/10.101 6/j.chemosphere.2017.03.048
Strange-Hansen, R., Holm, P. E., Jacobsen, O. S., & Jacobsen, C. S. (2004) Sorption, Mineralization and Mobility of N-(phosphonomethyl)glycine (Glyphosate) in Five Different Types of Gravel. Pest Management Science, 60(6), 570 – 578. https://doi.org/10.1002/ps.842
Tobler, N. B., Hofstetter, T. B. & Schwarzenbach, R. P. (2007). Assessing Iron-Mediated Oxidation of Toluene and Reduction of Nitroaromatic Contaminants in Anoxic Environments Using Compound-Specific Isotope Analysis. Environmental Science & Technology, 41(22), 7773–7780. https://doi.org/10.1021/es071129c
Tomlin, C. D. S. (2011). The Pesticide Manual [Op]: A World Compendium. Cabi
Villaverde, J., Rubio-Bellido, M., Lara-Moreno, A., Merchan, F. & Morillo, E. (2018). Combined use of microbial consortia isolated from different agricultural soils and cyclodextrin as a bioremediation technique for herbicide contaminated soils. Chemosphere, 193, 118–125. https://doi.org/10.1016/j.chemosphere.2017.10.172
Wang, S., Seiwert, B., Kästner, M., Miltner, A., Schäffer, A., Reemtsma, T., Yang, Q. & Nowak, K. M. (2016). (Bio)degradation of glyphosate in water-sediment microcosms – A stable isotope co-labeling approach. Water Research, 99, 91–100. https://doi.org/10.1016/j.watres.2016.04.041
Yu, X. M., Yu, T., Yin, G. H., Dong, Q. L., An, M., Wang, H. R. & Ai, C. X. (2015). Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genetics and Molecular Research, 14(4), 14717–14730. https://doi.org/10.4238 /2015.november.18.37
Zhang, H., Yuan, X., Xiong, T., Wang, H., & Jiang, L. (2020). Bioremediation of co-contaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 328. https://doi.org/10.1016/j.c ej.2020.125657
Zhu, J., Fu, L., Jin, C., Meng, Z., & Yang, N. (2019). Study on the Isolation of Two Atrazine-Degrading Bacteria and the Development of a Microbial Agent. Microorganisms, 3(7). https://doi.org/10.3390/microorganisms7030080
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Nara Priscila Barbosa Bravim; Anatércia Ferreira Alves; José Fábio França Orlanda
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.