Efeito da lactase, transglutaminase e temperatura nos cristais do sorvete considerando uma abordagem de metodologia de superfície de resposta

Autores

DOI:

https://doi.org/10.33448/rsd-v9i11.10138

Palavras-chave:

Delineamento composto central rotacional, Tamanho de cristal, Enzimas, Microscopia, Sorvete de morango.

Resumo

Este estudo teve como objetivo avaliar os cristais de sorvete considerando a adição das enzimas lactase (0,3% a 0,9%) e transglutaminase (0,6% a 7,4%), empregando diferentes temperaturas de incubação (13 a 47 °C) através de um Delineamento Composto Central Rotacional 23 (CCRD). O conteúdo de cristais foi estimado pelo espalhamento de sorvete em lâminas e as imagens dos cristais foram obtidas em um microscópio óptico de campo claro para contagem e determinação do tamanho dos cristais usando o software Image J. Todos os sorvetes preparados a 40 °C (T2, T6 e T8) e o tratamento TA2 (formulação semelhante ao tratamento T2) apresentaram pequeno teor de cristais se comparados às temperaturas de 20 e 30 °C; provavelmente foi associado a uma extensa presença de bolhas de ar, glóbulos de gordura e algumas micelas de caseína, favorecendo a aglomeração de pequenos cristais que formam uma textura mais firme, lisa e coesa. Além disso, o uso combinado das enzimas lactase e transglutaminase no sorvete é uma estratégia viável, eficiente e possível para a produção de sorvetes. Além disso, o uso da metodologia de superfície de resposta foi eficaz na seleção da melhor formulação em relação às características de desejabilidade para o sorvete.

Biografia do Autor

  • Celeide Pereira, Universidade Tecnológica Federal do Paraná

    Universidade Tecnológica Federal do Paraná, Câmpus Medianeira

  • Carla Adriana Pizarro Schmidt, Universidade Tecnológica Federal do Paraná

    Universidade Tecnológica Federal do Paraná, Câmpus Medianeira

  • Solange Teresinha Carpes, Universidade Tecnológica Federal do Paraná

    Universidade Tecnológica Federal do Paraná, Câmpus Pato Branco

  • Fabiana Ourique, Universidade Federal de Santa Catarina

    Universidade Federal de Santa Catarina

  • Chirle Ferreira, Universidade Federal de Santa Catarina

    Universidade Federal de Santa Catarina

  • Valdelucia Maria Alves de Souza Grinevicius, Universidade Federal de Santa Catarina

    Universidade Federal de Santa Catarina

  • André Wüst Zibetti, Universidade Federal de Santa Catarina

    Universidade Federal de Santa Catarina

  • Pedro Luiz Manique Barreto, Universidade Federal de Santa Catarina

    Universidade Federal de Santa Catarina

  • Rozangela Curi Pedrosa, Universidade Federal de Santa Catarina

    Universidade Federal de Santa Catarina

  • Ernani Sebastião Sant’Anna, Universidade Federal de Santa Catarina

    Universidade Federal de Santa Catarina

Referências

Adhikari, B. M., Truong, T., Prakash, S., Bansal, N., & Bhandari, B. (2020). Impact of incorporation of CO2 on the melting, texture and sensory attributes of soft-serve ice cream. International Dairy Journal, 104789. https://doi.org/10.1016/j.idairyj.2020.104789

Al, M., Ersoz, F., Ozaktas, T., Turkanoglu-Ozçelik, A., & Kuçukçetin, A. (2020). Comparison of the effects of adding microbial transglutaminase to milk and ice cream mixture on the properties of ice cream. International Journal of Dairy Technology, 0, 1–7. https://doi.org/10.1111/1471-0307.12707

Aloglu, H. S., Ozcan, Y., Karasu, S., Cetin, B., & Sagdic, O. (2018). Influence of transglutaminase treatment on the physicochemical , rheological , and melting properties of ice cream prepared from goat milk. Mljekarstvo, 68(2), 126–138. https://doi.org/10.15567/mljekarstvo.2018.0206

Cavender, G. A., & Kerr, W. L. (2020). Microfluidization of full-fat ice cream mixes : Effects on rheology and microstructure. Journal of Food Process Engineering, 43(e13350), 1–12. https://doi.org/10.1111/jfpe.13350

Chang, Y., & Hartel, R. W. (2002). Development of air cells in a batch ice cream freezer. Journal of Food Engineering, 55, 71–78.

Costa, F F, Resende, J. V, Abreu, L. R., & Goff, H. D. (2008). Effect of Calcium Chloride Addition on Ice Cream Structure and Quality. Journal of Dairy Science, 91(6), 2165–2174. https://doi.org/10.3168/jds.2007-0932

Costa, Fabiano Freire, Resende, J. V., & Abreu, L. R. (2012). Estabilidade da gordura em sorvetes. Boletin Do CEPPA, 30(1), 27–34.

Cruz, A. G., Antunes, A. E. C., Spuza, A. L. O. P., Faria, J. A. F., & Saad, S. M. I. (2009). Ice-cream as a probiotic food carrier. Food Research International, 42(9), 1233–1239. https://doi.org/10.1016/j.foodres.2009.03.020

Dekker, P. J. T., Koenders, D., & Bruins, M. J. (2019). Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients, 11(551), 1–14. https://doi.org/10.3390/nu11030551

Flores, A. A., & Goff, H. D. (1999). Ice Crystal Size Distributions in Dynamically Frozen Model Solutions and Ice Cream as Affected by Stabilizers. Journal of Dairy Science, 82(7), 1399–1407. https://doi.org/10.3168/jds.S0022-0302(99)75366-X

Francisquini, A., Rocha, J., Martins, E., Stephani, R., Henrique, P., Toledo, I. R., Perrone, Í. T., & Carvalho, A. F. De. (2020). 5-Hydroxymethylfurfural formation and color change in lactose-hydrolyzed Dulce de leche. Journal of Dairy Research, 86(477–482). https://doi.org/doi.org/10.1017/S0022029919000815

Goff, H. D. (2002). Formation and stabilisation of structure in ice-cream and related products. Current Opinion in Colloid and Interface Science, 7, 432–437.

Goff, H. D. (2008). 65 Years of ice cream science. International Dairy Journal, 18, 754–758. https://doi.org/10.1016/j.idairyj.2008.03.006

Hartel, R. W. (1996). Ice crystallization during the manufacture of ice cream. Trends in Food Science & Technology, 71(7), 315–321.

Homayouni, A., Javadi, M., Ansari, F., Pourjafar, H., Jafarzadeh, M., & Barzegar, A. (2018). Advanced Methods in Ice Cream Analysis : a Review. Food Analytical Methods, 11, 3224–3234.

Horner, T. W., Dunn, M. L., Eggett, D. L., & Ogden, L. V. (2011). β-Galactosidase activity of commercial lactase samples in raw and pasteurized milk at refrigerated temperatures. Journal of Dairy Science, 94(7), 3242–3249. https://doi.org/10.3168/jds.2010-3742

Kaleda, A., Tsanev, R., Klesment, T., Vilu, R., & Laos, K. (2018). Ice cream structure modi fi cation by ice-binding proteins. Food Chemistry, 246, 164–171. https://doi.org/10.1016/j.foodchem.2017.10.152

Kruif, C. G., Tuinier, R., Holt, C., Timmins, P. A., & Rollema, H. S. (2002). Physicochemical Study of K- and ?-Casein Dispersions and the Effect of Cross-Linking by Transglutaminase. Langmuir, 18(12), 4885–4891.

Kuraishi, C., Yamazaki, K., & Susa, Y. (2001). Transglutaminase: Its utilization in the food industry. Food Reviews International, 17(2), 221–246.

Matsumura, Y., Lee, D., & Mori, T. (2000). Molecular weight distributions of a -lactalbumin polymers formed by mammalian and microbial transglutaminases. Food Hydr, 14, 49–59.

Medeiros, A. C., Filho, E. R. T., & Bolini, H. M. A. (2019). Impact of Natural and Artificial Sweeteners Compounds in the Sensory Profile and Preference Drivers Applied to Traditional, Lactose-Free, and Vegan Frozen Desserts of Chocolate Flavor. Journal of Food Science, 102(9), 7838–7839.

Metwally, A. M. M. E. (2007). Effect of enzymatic cross-linking of milk proteins on properties of ice cream with different composition. International Journal of Food Science and Technology, 42, 939–947. https://doi.org/10.1111/j.1365-2621.2006.01314.x

Muse, M. R., & Hartel, R. W. (2004). Ice Cream Structural Elements that Affect Melting Rate and Hardness. Journal of Dairy Science, 87(1), 1–10. https://doi.org/10.3168/jds.S0022-0302(04)73135-5

Ndoye, F. T., & Alvarez, G. (2014). Characterization of ice recrystallization in ice cream during storage using the focused beam reflectance measurement. Journal of Food Engineering, 1–11. https://doi.org/10.1016/j.jfoodeng.2014.09.014

Pandalaneni, K., & Amamcharla, J. K. (2016). Focused beam reflectance measurement as a tool for in situ monitoring of the lactose crystallization process. Journal of Dairy Science, 99(7), 5244–5253. https://doi.org/10.3168/jds.2015-10643

Patel, M. R., Baer, R. J., & Acharya, M. R. (2006). Increasing the Protein Content of Ice Cream. Journal of Dairy Science, 89, 1400–1406. https://doi.org/10.3168/jds.S0022-0302(06)72208-1

Regand, A., & Goff, H. D. (2003). Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocolloids, 17, 95–102.

Rodrigues-Nogales, J. M. (2006). Enhancement of transglutaminase-induced protein cross-linking by preheat treatment of cows ’ milk : A statistical approach. International Dairy Journal, 16, 26–32. https://doi.org/10.1016/j.idairyj.2005.01.003

Rodrigues, M. I., & Iemma, A. F. (2014). Experimental design and process optimization. CRC Press.

Schorsch, C., Carrie, H., & Norton, I. T. (2000). Cross-linking casein micelles by a microbial transglutaminase : infuence of cross-links in acid-induced gelation. International Dairy Journ, 10, 529–539.

Sharma, R., Chr, P., & Qvist, K. B. (2001). Influence of transglutaminase treatment of skim milk on the formation of e - ( g -glutamyl ) lysine and the susceptibility of individual proteins towards crosslinking. International Dairy Journal, 11, 785–793.

Skryplonek, K., Henriques, M., Gomes, D., Viegas, J., Fonseca, C., Pereira, C., Dmytrów, I., & Mituniewicz-małek, A. (2019). Characteristics of lactose-free frozen yogurt with κ-carrageenan and corn starch as stabilizers. Journal of Dairy Science, 102(9), 7838–7848. https://doi.org/10.3168/jds.2019-16556

Tsuchiya, A.C., Da Silva, A. D. G. M., Brandt, D., Kalschne, D. L., Drunkler, D. A., & Colla, E. (2017). Lactose-reduced ice cream enriched with whey powder. Translation and Interpreting, 38(2). https://doi.org/10.5433/1679-0359.2017v38n2p749

Tsuchiya, Ana Claudia, Monteiro, A. G., Brandt, D., Kalschne, D. L., Drunkler, D. A., & Colla, E. (2017). Lactose-reduced ice cream enriched with whey powder. Semina: Ciências Agrárias, 38(2), 749–758. https://doi.org/10.5433/1679-0359.2017v38n2p749

Wang, J., Zhao, M., Yang, X., Jiang, Y., & Chun, C. (2007). Gelation behavior of wheat gluten by heat treatment followed by transglutaminase cross-linking reaction. Food Hydrocolloids, 21, 174–179. https://doi.org/10.1016/j.foodhyd.2006.03.006

Downloads

Publicado

2020-12-02

Edição

Seção

Ciências Agrárias e Biológicas

Como Citar

Efeito da lactase, transglutaminase e temperatura nos cristais do sorvete considerando uma abordagem de metodologia de superfície de resposta. Research, Society and Development, [S. l.], v. 9, n. 11, p. e72191110138, 2020. DOI: 10.33448/rsd-v9i11.10138. Disponível em: https://rsdjournal.org/rsd/article/view/10138. Acesso em: 25 ago. 2025.