Efeito da lactase, transglutaminase e temperatura nos cristais do sorvete considerando uma abordagem de metodologia de superfície de resposta

Autores

DOI:

https://doi.org/10.33448/rsd-v9i11.10138

Palavras-chave:

Delineamento composto central rotacional; Tamanho de cristal; Enzimas; Microscopia; Sorvete de morango.

Resumo

Este estudo teve como objetivo avaliar os cristais de sorvete considerando a adição das enzimas lactase (0,3% a 0,9%) e transglutaminase (0,6% a 7,4%), empregando diferentes temperaturas de incubação (13 a 47 °C) através de um Delineamento Composto Central Rotacional 23 (CCRD). O conteúdo de cristais foi estimado pelo espalhamento de sorvete em lâminas e as imagens dos cristais foram obtidas em um microscópio óptico de campo claro para contagem e determinação do tamanho dos cristais usando o software Image J. Todos os sorvetes preparados a 40 °C (T2, T6 e T8) e o tratamento TA2 (formulação semelhante ao tratamento T2) apresentaram pequeno teor de cristais se comparados às temperaturas de 20 e 30 °C; provavelmente foi associado a uma extensa presença de bolhas de ar, glóbulos de gordura e algumas micelas de caseína, favorecendo a aglomeração de pequenos cristais que formam uma textura mais firme, lisa e coesa. Além disso, o uso combinado das enzimas lactase e transglutaminase no sorvete é uma estratégia viável, eficiente e possível para a produção de sorvetes. Além disso, o uso da metodologia de superfície de resposta foi eficaz na seleção da melhor formulação em relação às características de desejabilidade para o sorvete.

Biografia do Autor

Celeide Pereira, Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná, Câmpus Medianeira

Carla Adriana Pizarro Schmidt, Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná, Câmpus Medianeira

Solange Teresinha Carpes, Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná, Câmpus Pato Branco

Fabiana Ourique, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Chirle Ferreira, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Valdelucia Maria Alves de Souza Grinevicius, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

André Wüst Zibetti, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Pedro Luiz Manique Barreto, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Rozangela Curi Pedrosa, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Ernani Sebastião Sant’Anna, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Referências

Adhikari, B. M., Truong, T., Prakash, S., Bansal, N., & Bhandari, B. (2020). Impact of incorporation of CO2 on the melting, texture and sensory attributes of soft-serve ice cream. International Dairy Journal, 104789. https://doi.org/10.1016/j.idairyj.2020.104789

Al, M., Ersoz, F., Ozaktas, T., Turkanoglu-Ozçelik, A., & Kuçukçetin, A. (2020). Comparison of the effects of adding microbial transglutaminase to milk and ice cream mixture on the properties of ice cream. International Journal of Dairy Technology, 0, 1–7. https://doi.org/10.1111/1471-0307.12707

Aloglu, H. S., Ozcan, Y., Karasu, S., Cetin, B., & Sagdic, O. (2018). Influence of transglutaminase treatment on the physicochemical , rheological , and melting properties of ice cream prepared from goat milk. Mljekarstvo, 68(2), 126–138. https://doi.org/10.15567/mljekarstvo.2018.0206

Cavender, G. A., & Kerr, W. L. (2020). Microfluidization of full-fat ice cream mixes : Effects on rheology and microstructure. Journal of Food Process Engineering, 43(e13350), 1–12. https://doi.org/10.1111/jfpe.13350

Chang, Y., & Hartel, R. W. (2002). Development of air cells in a batch ice cream freezer. Journal of Food Engineering, 55, 71–78.

Costa, F F, Resende, J. V, Abreu, L. R., & Goff, H. D. (2008). Effect of Calcium Chloride Addition on Ice Cream Structure and Quality. Journal of Dairy Science, 91(6), 2165–2174. https://doi.org/10.3168/jds.2007-0932

Costa, Fabiano Freire, Resende, J. V., & Abreu, L. R. (2012). Estabilidade da gordura em sorvetes. Boletin Do CEPPA, 30(1), 27–34.

Cruz, A. G., Antunes, A. E. C., Spuza, A. L. O. P., Faria, J. A. F., & Saad, S. M. I. (2009). Ice-cream as a probiotic food carrier. Food Research International, 42(9), 1233–1239. https://doi.org/10.1016/j.foodres.2009.03.020

Dekker, P. J. T., Koenders, D., & Bruins, M. J. (2019). Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients, 11(551), 1–14. https://doi.org/10.3390/nu11030551

Flores, A. A., & Goff, H. D. (1999). Ice Crystal Size Distributions in Dynamically Frozen Model Solutions and Ice Cream as Affected by Stabilizers. Journal of Dairy Science, 82(7), 1399–1407. https://doi.org/10.3168/jds.S0022-0302(99)75366-X

Francisquini, A., Rocha, J., Martins, E., Stephani, R., Henrique, P., Toledo, I. R., Perrone, Í. T., & Carvalho, A. F. De. (2020). 5-Hydroxymethylfurfural formation and color change in lactose-hydrolyzed Dulce de leche. Journal of Dairy Research, 86(477–482). https://doi.org/doi.org/10.1017/S0022029919000815

Goff, H. D. (2002). Formation and stabilisation of structure in ice-cream and related products. Current Opinion in Colloid and Interface Science, 7, 432–437.

Goff, H. D. (2008). 65 Years of ice cream science. International Dairy Journal, 18, 754–758. https://doi.org/10.1016/j.idairyj.2008.03.006

Hartel, R. W. (1996). Ice crystallization during the manufacture of ice cream. Trends in Food Science & Technology, 71(7), 315–321.

Homayouni, A., Javadi, M., Ansari, F., Pourjafar, H., Jafarzadeh, M., & Barzegar, A. (2018). Advanced Methods in Ice Cream Analysis : a Review. Food Analytical Methods, 11, 3224–3234.

Horner, T. W., Dunn, M. L., Eggett, D. L., & Ogden, L. V. (2011). β-Galactosidase activity of commercial lactase samples in raw and pasteurized milk at refrigerated temperatures. Journal of Dairy Science, 94(7), 3242–3249. https://doi.org/10.3168/jds.2010-3742

Kaleda, A., Tsanev, R., Klesment, T., Vilu, R., & Laos, K. (2018). Ice cream structure modi fi cation by ice-binding proteins. Food Chemistry, 246, 164–171. https://doi.org/10.1016/j.foodchem.2017.10.152

Kruif, C. G., Tuinier, R., Holt, C., Timmins, P. A., & Rollema, H. S. (2002). Physicochemical Study of K- and ?-Casein Dispersions and the Effect of Cross-Linking by Transglutaminase. Langmuir, 18(12), 4885–4891.

Kuraishi, C., Yamazaki, K., & Susa, Y. (2001). Transglutaminase: Its utilization in the food industry. Food Reviews International, 17(2), 221–246.

Matsumura, Y., Lee, D., & Mori, T. (2000). Molecular weight distributions of a -lactalbumin polymers formed by mammalian and microbial transglutaminases. Food Hydr, 14, 49–59.

Medeiros, A. C., Filho, E. R. T., & Bolini, H. M. A. (2019). Impact of Natural and Artificial Sweeteners Compounds in the Sensory Profile and Preference Drivers Applied to Traditional, Lactose-Free, and Vegan Frozen Desserts of Chocolate Flavor. Journal of Food Science, 102(9), 7838–7839.

Metwally, A. M. M. E. (2007). Effect of enzymatic cross-linking of milk proteins on properties of ice cream with different composition. International Journal of Food Science and Technology, 42, 939–947. https://doi.org/10.1111/j.1365-2621.2006.01314.x

Muse, M. R., & Hartel, R. W. (2004). Ice Cream Structural Elements that Affect Melting Rate and Hardness. Journal of Dairy Science, 87(1), 1–10. https://doi.org/10.3168/jds.S0022-0302(04)73135-5

Ndoye, F. T., & Alvarez, G. (2014). Characterization of ice recrystallization in ice cream during storage using the focused beam reflectance measurement. Journal of Food Engineering, 1–11. https://doi.org/10.1016/j.jfoodeng.2014.09.014

Pandalaneni, K., & Amamcharla, J. K. (2016). Focused beam reflectance measurement as a tool for in situ monitoring of the lactose crystallization process. Journal of Dairy Science, 99(7), 5244–5253. https://doi.org/10.3168/jds.2015-10643

Patel, M. R., Baer, R. J., & Acharya, M. R. (2006). Increasing the Protein Content of Ice Cream. Journal of Dairy Science, 89, 1400–1406. https://doi.org/10.3168/jds.S0022-0302(06)72208-1

Regand, A., & Goff, H. D. (2003). Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocolloids, 17, 95–102.

Rodrigues-Nogales, J. M. (2006). Enhancement of transglutaminase-induced protein cross-linking by preheat treatment of cows ’ milk : A statistical approach. International Dairy Journal, 16, 26–32. https://doi.org/10.1016/j.idairyj.2005.01.003

Rodrigues, M. I., & Iemma, A. F. (2014). Experimental design and process optimization. CRC Press.

Schorsch, C., Carrie, H., & Norton, I. T. (2000). Cross-linking casein micelles by a microbial transglutaminase : infuence of cross-links in acid-induced gelation. International Dairy Journ, 10, 529–539.

Sharma, R., Chr, P., & Qvist, K. B. (2001). Influence of transglutaminase treatment of skim milk on the formation of e - ( g -glutamyl ) lysine and the susceptibility of individual proteins towards crosslinking. International Dairy Journal, 11, 785–793.

Skryplonek, K., Henriques, M., Gomes, D., Viegas, J., Fonseca, C., Pereira, C., Dmytrów, I., & Mituniewicz-małek, A. (2019). Characteristics of lactose-free frozen yogurt with κ-carrageenan and corn starch as stabilizers. Journal of Dairy Science, 102(9), 7838–7848. https://doi.org/10.3168/jds.2019-16556

Tsuchiya, A.C., Da Silva, A. D. G. M., Brandt, D., Kalschne, D. L., Drunkler, D. A., & Colla, E. (2017). Lactose-reduced ice cream enriched with whey powder. Translation and Interpreting, 38(2). https://doi.org/10.5433/1679-0359.2017v38n2p749

Tsuchiya, Ana Claudia, Monteiro, A. G., Brandt, D., Kalschne, D. L., Drunkler, D. A., & Colla, E. (2017). Lactose-reduced ice cream enriched with whey powder. Semina: Ciências Agrárias, 38(2), 749–758. https://doi.org/10.5433/1679-0359.2017v38n2p749

Wang, J., Zhao, M., Yang, X., Jiang, Y., & Chun, C. (2007). Gelation behavior of wheat gluten by heat treatment followed by transglutaminase cross-linking reaction. Food Hydrocolloids, 21, 174–179. https://doi.org/10.1016/j.foodhyd.2006.03.006

Downloads

Publicado

02/12/2020

Como Citar

PEREIRA, C. .; SCHMIDT, C. A. P. .; KALSCHNE, D. L.; CARPES, S. T. .; OURIQUE, F.; FERREIRA, C. .; GRINEVICIUS, V. M. A. de S. .; ZIBETTI, A. W.; BARRETO, P. L. M.; PEDROSA, R. C. .; SANT’ANNA, E. S. . Efeito da lactase, transglutaminase e temperatura nos cristais do sorvete considerando uma abordagem de metodologia de superfície de resposta. Research, Society and Development, [S. l.], v. 9, n. 11, p. e72191110138, 2020. DOI: 10.33448/rsd-v9i11.10138. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10138. Acesso em: 15 jan. 2025.

Edição

Seção

Ciências Agrárias e Biológicas