Efeitos dos extratos de duas macroalgas marinhas de Ulva spp. na germinação e no crescimento de mudas do tomate

Autores

DOI:

https://doi.org/10.33448/rsd-v9i11.10174

Palavras-chave:

Bioestimulante; Agricultura ecológica; Envigoramento de sementes; Vigor de mudas.

Resumo

Extratos de algas marrons são usados ​​comercialmente como bioestimulantes agrícolas, e as espécies de macroalgas verdes Ulva tem se mostrado promissoras para esse propósito. Avaliamos a dosagem ideal da ulvana e da farinha de U. lactuca no envigoramento das sementes do tomate Solanun lycopersicum e os efeitos dos extratos de U. flexuosa e U. lactuca no crescimento de mudas A recuperação da germinação de sementes envelhecidas após a aplicação de U. lactuca foi avaliada pelas taxas de germinação e emergência de plântulas. Mudas cultivadas em casa de vegetação foram irrigadas com 0,2 e 0,4 g.L-1 da solução de farinha ou de ulvana de Ulva spp. Os parâmetros de crescimento das mudas (altura, diâmetro do caule, relação altura/diâmetro do caule, biomassa e número de folhas) foram comparados com o controle (mudas irrigadas com água destilada). Todas as dosagens de ulvana e de farinha de U. lactuca aumentaram as taxas de germinação das sementes envelhecidas em comparação com os controles. Nenhuma diferença significativa foi observada nas taxas de emergência de plântulas. Após os tratamentos com extratos de Ulva spp. não foram detectadas diferenças significativas no crescimento das mudas. Concluímos que baixas doses do extrato de U. lactuca aumentam as taxas de germinação de sementes de S. lycopersicum e, embora diferentes dosagens dos extratos das duas espécies de Ulva não estimulam o crescimento das mudas do tomate, também não são letais.

Referências

Alaswad, A., Dassisti, M., Prescott, T., & Olabi, A. G. (2015). Technologies and developments of third generation biofuel production. Renewable and Sustainable Energy Reviews, 51, 1446–1460. https://doi.org/10.1016/j.rser.2015.07.058

Argerich, C., Bradford, K., & Tarquis, A. (1989). The effects of priming and ageing on resistance to deterioration of tomato seeds. Journal of Experimental Botany, 40(5), 593–598. https://doi.org/10.1093/jxb/40.5.593

Arioli, T., Mattner, S. W., & Winberg, P. C. (2015). Applications of seaweed extracts in Australian agriculture: past, present and future. Journal of Applied Phycology, 27(5), 2007–2015. https://doi.org/10.1007/s10811-015-0574-9

Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48. https://doi.org/10.1016/j.scienta.2015.09.012

Benech-Arnold, R., Sanchez, R. (2004). Handbook of Seed Physiology (CRC Press (ed.)).

Brasil. (2009). Regras para análise de sementes. In Brasília: Mapa/AC. https://doi.org/978-85-99851-70-8

Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1–2), 3–41. https://doi.org/10.1007/s11104-014-2131-8

Castelar, B., Reis, R. P., & dos Santos Calheiros, A. C. (2014). Ulva lactuca and U. flexuosa (Chlorophyta, Ulvophyceae) cultivation in Brazilian tropical waters: Recruitment, growth, and ulvan yield. Journal of Applied Phycology, 26(5), 1989–1999. https://doi.org/10.1007/s10811-014-0329-z

Castellanos-Barriga, L. G., Santacruz-Ruvalcaba, F., Hernández-Carmona, G., Ramírez-Briones, E., & Hernández-Herrera, R. M. (2017). Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). Journal of Applied Phycology, 29(5), 2479–2488. https://doi.org/10.1007/s10811-017-1082-x

Chanthini, K. M.-P., Stanley-Raja, V., Thanigaivel, A., Karthi, S., Palanikani, R., Sundar, N. S., Sivanesh, H., Soranam, R., & Senthil-Nathan, S. (2019). Sustainable Agronomic Strategies for Enhancing the Yield and Nutritional Quality of Wild Tomato, Solanum Lycopersicum (l) Var Cerasiforme Mill. Agronomy, 9(6), 311. https://doi.org/10.3390/agronomy9060311

Cole, A. J., Roberts, D. A., Garside, A. L., de Nys, R., & Paul, N. A. (2016). Seaweed compost for agricultural crop production. Journal of Applied Phycology, 28(1), 629–642. https://doi.org/10.1007/s10811-015-0544-2

Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), 371–393. https://doi.org/10.1007/s10811-010-9560-4

Cuartero, J., Bolarín, M., Asíns, M., & Moreno, V. (2006). Increasing salt tolerance in the tomato. Journal of Experimental Botany, 57(5), 1045–1058. https://doi.org/10.1093/jxb/erj102

Czabator, F. J. (1962). Germination value: an index combining speed and completeness of pine seed germination. Forest Science, 8(4), 386–396. https://doi.org/10.1093/forestscience/8.4.386

du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021

El Boukhari, M. E. M., Barakate, M., Bouhia, Y., & Lyamlouli, K. (2020). Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants, 9(3). https://doi.org/10.3390/plants9030359

faostat. (n.d.). Food and Agriculture Organization of the United Nations Available. 2019. Retrieved December 30, 2019, from http://fao.org/faostat/em

Finch-Savage, W., & Bassel, G. (2016). Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67(3), 567–591. https://doi.org/doi:10.1093/jxb/erv490

Guiry, M., & Guiry, G. (2020). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org

Gupta, V., Kumar, M., Brahmbhatt, H., Reddy, C. R. K., Seth, A., & Jha, B. (2011). Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid-liquid microextraction method. Plant Physiology and Biochemistry, 49(11), 1259–1263. https://doi.org/10.1016/j.plaphy.2011.08.004

Hassan, S. M., & Ghareib, H. R. (2009). Bioactivity of Ulva lactuca L. acetone extract on germination and growth of lettuce and tomato plants. African Journal of Biotechnology, 8(16), 3832–3838. https://doi.org/10.4314/ajb.v8i16.62068

Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Ruiz-López, M. A., Norrie, J., & Hernández-Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology, 26(1), 619–628. https://doi.org/10.1007/s10811-013-0078-4

Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Zañudo-Hernández, J., & Hernández-Carmona, G. (2016). Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. Journal of Applied Phycology, 28(4), 2549–2560. https://doi.org/10.1007/s10811-015-0781-4

Hughey, J. R., Maggs, C. A., Mineur, F., Jarvis, C., Miller, K. A., Shabaka, S. H., & Gabrielson, P. W. (2019). Genetic analysis of the Linnaean Ulva lactuca (Ulvales, Chlorophyta) holotype and related type specimens reveals name misapplications, unexpected origins, and new synonymies. Journal of Phycology, 55(3), 503–508. https://doi.org/10.1111/jpy.12860

IndexBox. (n.d.). Organic Tomato Market, Analysis and Forecast to 2025. 2017. Retrieved from https://pt.slideshare.net/IndexBox_Marketing/us-organic-tomato-market-analysis-and-forecast-to-2025

Kalaivanan, C., Chandrasekaran, M., & Venkatesalu, V. (2012). Effect of seaweed liquid extract of Caulerpa scalpelliformis on growth and biochemical constituents of black gram Vigna mungo (L.) Hepper). Phykos, 42(2), 46–53.

Khan, W., Rayirath, P. Usha Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J., Prithiviraj, B., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J., & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4), 386–399. https://doi.org/10.1007/s00344-009-9103-x

Lehahn, Y., Ingle, K. N., & Golberg, A. (2016). Global potential of offshore and shallow waters macroalgal biorefineries to provide for food, chemicals and energy: Feasibility and sustainability. Algal Research, 17, 150–160. https://doi.org/10.1016/j.algal.2016.03.031

Matthews, S., Noli, E., Demir, I., Khajeh-Hosseini, M., & Wagner, M. H. (2012). Evaluation of seed quality: From physiology to international standardization. Seed Science Research, 22(SUPPL. 1) S69-S73. https://doi.org/10.1017/S0960258511000365

Mzibra, A., Aasfar, A., El Arroussi, H., Khouloud, M., Dhiba, D., Kadmiri, I. M., & Bamouh, A. (2018). Polysaccharides extracted from Moroccan seaweed: a promising source of tomato plant growth promoters. Journal of Applied Phycology, 30(5), 2953–2962. https://doi.org/10.1007/s10811-018-1421-6

Nigam, M., Mishra, A., Salehi, Kumar, M., Sharifi-Rad, M., Coviello, E., Iriti, M., & Sharifi-Rad, J. (2019). Accelerated ageing induces physiological and biochemical changes in tomato seeds involving MAPK pathways. Scientia Horticulturae, 248, 20–28. https://doi.org/10.1016/j.scienta.2018.12.056

Panobianco, M., & Marcos Filho, J. (2001). Envelhecimento acelerado e deterioração controlada em sementes de tomate. Scientia Agricola, 58(3), 525–531. https://doi.org/10.1590/S0103-90162001000300014

Paulert, R., Talamini, V., Cassolato, J. E. F., Duarte, M. E. R., Noseda, M. D., Smania Jr, a., & Stadnik, M. J. (2009). Effects of sulfated polysaccharide and alcoholic extracts from green seaweed Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.). Journal of Plant Diseases and Protection, 116(6), 263–270. https://doi.org/10.1007/BF03356321

Reis, R. P., Carvalho Junior, A. A., Facchinei, A. P., Calheiros, A. C. S., & Castelar, B. (2018). Direct effects of ulvan and a flour produced from the green alga Ulva fasciata Delile on the fungus Stemphylium solani Weber. Algal Research, 30, 23–27. https://doi.org/10.1016/j.algal.2017.12.007

Ricci, M., Tilbury, L., Daridon, B., & Sukalac, K. (2019). General principles to justify plant biostimulant claims. Frontiers in Plant Science, 10(April), 1–8. https://doi.org/10.3389/fpls.2019.00494

Senthilkumar, R., Vijayaraghavan, K., Thilakavathi, M., Iyer, P. V. R., & Velan, M. (2006). Seaweeds for the remediation of wastewaters contaminated with zinc (II) ions. Journal of Hazardous Materials, 136(3), 791–799. https://doi.org/10.1016/j.jhazmat.2006.01.014

Sharma, S., Tiwari, S., Hasan, A., Saxena, V., & Pandey, L. M. (2018). Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech, 8(4), 1–18. https://doi.org/10.1007/s13205-018-1237-8

Singh, J., Sastry, E., & Singh, V. (2012). Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiology Molecular Biology Plants, 18, 45-50. https://doi.org/10.1007/s12298-011-0097-z

Van Oosten, M. J., Olimpia, P., De Pascale, S., Silletti, S., Maggio, A., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1), 1–12. https://doi.org/10.1186/s40538-017-0089-5

Wade, R., Augyte, S., Harden, M., Nuzhdin, S., Yarish, C., & Alberto, F. (2020). Macroalgal germplasm banking for conservation, food security, and industry. PLoS Biology, 18(2), 1–10. https://doi.org/10.1371/journal.pbio.3000641

Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.02049

Zoran, I. S., Kapoulas, N., Šunić, L., (2014). Tomato fruit quality from organic and conventional production. In Vytautas Pilipavicius (Ed.), Organic Agriculture Towards Sustainability agronomic: Vol. i (Issue May, pp. 147–169). https://doi.org/10.1016/j.colsurfa.2011.12.014

Downloads

Publicado

28/11/2020

Como Citar

REIS, R. P. .; ANDRADE, A. C. S. de .; CALHEIROS, A. C.; OLIVEIRA, J. C. .; CASTELAR, B. Efeitos dos extratos de duas macroalgas marinhas de Ulva spp. na germinação e no crescimento de mudas do tomate. Research, Society and Development, [S. l.], v. 9, n. 11, p. e61691110174, 2020. DOI: 10.33448/rsd-v9i11.10174. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10174. Acesso em: 23 nov. 2024.

Edição

Seção

Ciências Agrárias e Biológicas