Secagem convectiva de polpa de Butia capitata: efeito da temperatura do ar nos parâmetros cinéticos e de qualidade
DOI:
https://doi.org/10.33448/rsd-v9i11.10583Palavras-chave:
Butia capitata; Desidratação de frutas; Cinética de secagem; Difusão; Composto bioativo.Resumo
Butiá (Butia capitata) é uma fruta típica do Cerrado brasileiro, rica em diversos compostos bioativos. Este trabalho teve como objetivo estudar a influência da temperatura do ar na cinética de secagem e nos parâmetros de qualidade da polpa de butiá. As polpas foram secas a 50 e 70 °C. Modelos matemáticos foram ajustados aos dados de razão de umidade. A difusividade efetiva da umidade (Deff) e a taxa de secagem (DR) foram calculadas. As polpas frescas e secas foram caracterizadas quanto ao teor de umidade (MC), atividade de água (aw), teor de carotenoides totais (TCC), flavonoides amarelos, teor de fenólicos totais (TPC), capacidade antioxidante e cor. O modelo de Page foi o que melhor se ajustou aos dados de taxa de umidade. A secagem reduziu o MC, aw e o conteúdo de compostos bioativos e alterou os parâmetros colorimétricos. A temperatura mais alta resultou em menor TCC e maior diferença de cor total. Porém, reduziu o tempo de secagem (de 300 para 180 min), com maiores Deff e DR e resultou em amostras com maior retenção de flavonoides amarelos, TPC e antioxidantes totais e menor índice de escurecimento. Portanto, 70 °C foi a temperatura mais adequada para a secagem da polpa de butiá.
Referências
Aguiar, M. C. S., Silvério, F. O., de Pinho, G. P., Lopes, P. S. N., Fidêncio, P. H., & Ventura, S. J. (2014). Volatile compounds from fruits of Butia capitata at different stages of maturity and storage. Food Research International, 62, 1095–1099. https://doi.org/10.1016/j.foodres.2014.05.039
Almeida, M. M. B., de Sousa, P. H. M., Arriaga, Â. M. C., do Prado, G. M., Magalhães, C. E. de C., Maia, G. A., & de Lemos, T. L. G. (2011). Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Research International, 44(7), 2155–2159. https://doi.org/10.1016/j.foodres.2011.03.051
AOAC. (2010). Official methods of analysis (18th ed.). Washington: AOAC Internacional Association of Official Analytical Chemists.
Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Selection of the Solvent and Extraction Conditions for Maximum Recovery of Antioxidant Phenolic Compounds from Coffee Silverskin. Food and Bioprocess Technology, 7, 1322–1332. https://doi.org/10.1007/s11947-013-1115-7
Bober, I., & Oszmianski, J. (2004). The use of chokeberry’s pomace to infusion of fruit tea. Acta Scientiarum Polonorum Technologia Alimentaria, 3(1), 63–72.
Carbonell-Capella, J. M., Buniowska, M., Esteve, M. J., & Frígola, A. (2015). Effect of Stevia rebaudiana addition on bioaccessibility of bioactive compounds and antioxidant activity of beverages based on exotic fruits mixed with oat following simulated human digestion. Food Chemistry, 184, 122–130. https://doi.org/10.1016/j.foodchem.2015.03.095
Chong, C. H., Law, C. L., Figiel, A., Wojdyło, A., & Oziembłowski, M. (2013). Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chemistry, 141(4), 3889–3896. https://doi.org/10.1016/j.foodchem.2013.06.042
Crank, J. (1975). The mathematics of diffusion (2nd ed.). London: Oxford University Press. https://doi.org/10.1115/1.3245200
Curi, P. N., Salgado, D. L., Mendonça, K., Pio, R., Ferreira, J. L. G., & Souza, V. R. de. (2019). Influence of microwave processing on the bioactive compounds, antioxidant activity and sensory acceptance of blackberry jelly. Food Science and Technology, 39(suppl 2), 386–391. https://doi.org/10.1590/fst.18618
De Souza, V. R., Pereira, P. A. P., Queiroz, F., Borges, S. V., & De Deus Souza Carneiro, J. (2012). Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food Chemistry, 134(1), 381–386. https://doi.org/10.1016/j.foodchem.2012.02.191
Fabisiak, A., Sheng, L., Stawczyk, J., & Witrowa-Rajchert, D. (2005). The influence of method and apples drying temperature on the antioxidant activity of extracts produced from those dried apples. Zywność Nauka Technologia Jakość, 2, 318–327.
Faria, J. P., Siqueira, E. M. A., Vieira, R. F., & Agostini-Costa, T. da S. (2011). Fruits of Butia capitata (Mart.) Becc as good sources of β -carotene and provitamina. Revista Brasileira de Fruticultura, 33(spe1), 612–617. https://doi.org/10.1590/S0100-29452011000500084
Hoffmann, J. F., Barbieri, R. L., Rombaldi, C. V., & Chaves, F. C. (2014). Butia spp. (Arecaceae): An overview. Scientia Horticulturae, 179, 122–131. https://doi.org/10.1016/j.scienta.2014.08.011
Hoffmann, J. F., Zandoná, G. P., dos Santos, P. S., Dallmann, C. M., Madruga, F. B., Rombaldi, C. V., & Chaves, F. C. (2017). Stability of bioactive compounds in butiá (Butia odorata) fruit pulp and nectar. Food Chemistry, 237, 638–644. https://doi.org/10.1016/j.foodchem.2017.05.154
Jangam, S. V., Joshi, V. S., Mujumdar, A. S., & Thorat, B. N. (2008). Studies on Dehydration of Sapota ( Achras zapota ). Drying Technology, 26(3), 369–377. https://doi.org/10.1080/07373930801898190
Junqueira, J. R. de J., Corrêa, J. L. G., de Oliveira, H. M., Ivo Soares Avelar, R., & Salles Pio, L. A. (2017). Convective drying of cape gooseberry fruits: Effect of pretreatments on kinetics and quality parameters. LWT - Food Science and Technology, 82, 404–410. https://doi.org/10.1016/j.lwt.2017.04.072
Karam, M. C., Petit, J., Zimmer, D., Baudelaire Djantou, E., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32–49. https://doi.org/10.1016/j.jfoodeng.2016.05.001
Kumar, P. S., Nambi, E., Shiva, K. N., Vaganan, M. M., Ravi, I., Jeyabaskaran, K. J., & Uma, S. (2019). Thin layer drying kinetics of Banana var. Monthan (ABB): Influence of convective drying on nutritional quality, microstructure, thermal properties, color, and sensory characteristics. Journal of Food Process Engineering, 42(4), 1–12. https://doi.org/10.1111/jfpe.13020
López, J., Uribe, E., Vega-Gálvez, A., Miranda, M., Vergara, J., Gonzalez, E., & Di Scala, K. (2010). Effect of Air Temperature on Drying Kinetics, Vitamin C, Antioxidant Activity, Total Phenolic Content, Non-enzymatic Browning and Firmness of Blueberries Variety O´Neil. Food and Bioprocess Technology, 3(5), 772–777. https://doi.org/10.1007/s11947-009-0306-8
Macedo, L. L., Silva Araújo, C., Vimercati, W. C., Saraiva, S. H., & Teixeira, L. J. Q. (2019). Evaluation of different bleaching methods applied to yacon. Journal of Food Process Engineering, 42(7). https://doi.org/10.1111/jfpe.13276
Macedo, L. L., Vimercati, W. C., Araújo, C. da S., Saraiva, S. H., & Teixeira, L. J. Q. (2020). Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. Journal of Food Process Engineering, e13451, 1–10. https://doi.org/10.1111/jfpe.13451
Mendonça, K. S., Corrêa, J. L. G., Junqueira, J. R. de J., Cirillo, M. A., Figueira, F. V., & Carvalho, E. E. N. (2017). Influences of convective and vacuum drying on the quality attributes of osmo-dried pequi (Caryocar brasiliense Camb.) slices. Food Chemistry, 224, 212–218. https://doi.org/10.1016/j.foodchem.2016.12.051
Mounir, S., Ghandour, A., Téllez-Pérez, C., Aly, A. A., Mujumdar, A. S., & Allaf, K. (2020). Phytochemicals, chlorophyll pigments, antioxidant activity, relative expansion ratio, and microstructure of dried okra pods: swell-drying by instant controlled pressure drop versus conventional shade drying. Drying Technology, 1–15. https://doi.org/10.1080/07373937.2020.1756843
Muliterno, M. M., Rodrigues, D., de Lima, F. S., Ida, E. I., & Kurozawa, L. E. (2017). Conversion/degradation of isoflavones and color alterations during the drying of okara. LWT - Food Science and Technology, 75, 512–519. https://doi.org/10.1016/j.lwt.2016.09.031
Multari, S., Marsol-Vall, A., Keskitalo, M., Yang, B., & Suomela, J.-P. (2018). Effects of different drying temperatures on the content of phenolic compounds and carotenoids in quinoa seeds (Chenopodium quinoa) from Finland. Journal of Food Composition and Analysis, 72, 75–82. https://doi.org/10.1016/j.jfca.2018.06.008
Omolola, A. O., Jideani, A. I. O., & Kapila, P. F. (2017). Quality properties of fruits as affected by drying operation. Critical Reviews in Food Science and Nutrition, 57(1), 95–108. https://doi.org/10.1080/10408398.2013.859563
Pathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology, 6, 36–60. https://doi.org/10.1007/s11947-012-0867-9
Pereira, M. C., Steffens, R. S., Jablonski, A., Hertz, P. F., Rios, A. de O., Vizzotto, M., & Flôres, S. H. (2013). Characterization, bioactive compounds and antioxidant potential of three Brazilian fruits. Journal of Food Composition and Analysis, 29(1), 19–24. https://doi.org/10.1016/j.jfca.2012.07.013
Rufino, M. do S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037
Romdhane, N. G., Bonazzi, C., Kechaou, N., & Mihoubi, N. B. (2015). Effect of Air-Drying Temperature on Kinetics of Quality Attributes of Lemon ( Citrus limon cv. lunari) Peels. Drying Technology, 33(13), 1581–1589. https://doi.org/10.1080/07373937.2015.1012266
Şahin, U., & Öztürk, H. K. (2016). Effects of pulsed vacuum osmotic dehydration (PVOD) on drying kinetics of figs (Ficus carica L). Innovative Food Science and Emerging Technologies, 36, 104–111. https://doi.org/10.1016/j.ifset.2016.06.003
Samoticha, J., Wojdyło, A., & Lech, K. (2016). The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT - Food Science and Technology, 66, 484–489. https://doi.org/10.1016/j.lwt.2015.10.073
Santos, F. S. dos, Figueirêdo, R. M. F. de, Queiroz, A. J. de M., & Santos, D. da C. (2017). Drying kinetics and physical and chemical characterization of white-fleshed ‘pitaya’ peels. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(12), 872–877. https://doi.org/10.1590/1807-1929/agriambi.v21n12p872-877
Schneider, L. R., dos Santos, D. C., Campos, A. D., & Lund, R. G. (2017). The Phytochemistry and Pharmacology of Butia sp.: A Systematic Review and an Overview of the Technological Monitoring Process. Phytotherapy Research, 31(10), 1495–1503. https://doi.org/10.1002/ptr.5883
Shaari, N. A., Sulaiman, R., Rahman, R. A., & Bakar, J. (2018). Production of pineapple fruit (Ananas comosus) powder using foam mat drying: Effect of whipping time and egg albumen concentration. Journal of Food Processing and Preservation, 42(2), 1–10. https://doi.org/10.1111/jfpp.13467
Silva, L. M. R. da, Figueiredo, E. A. T. de, Ricardo, N. M. P. S., Vieira, I. G. P., Figueiredo, R. W. de, Brasil, I. M., & Gomes, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, 143, 398–404. https://doi.org/10.1016/j.foodchem.2013.08.001
Song, X. D., Mujumdar, A. S., Law, C. L., Fang, X. M., Peng, W. J., Deng, L. Z., … Xiao, H. W. (2019). Effect of drying air temperature on drying kinetics, color, carotenoid content, antioxidant capacity and oxidation of fat for lotus pollen. Drying Technology, 0(0), 1–14. https://doi.org/10.1080/07373937.2019.1616752
Thuwapanichayanan, R., Prachayawarakorn, S., Kunwisawa, J., & Soponronnarit, S. (2011). Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying. LWT - Food Science and Technology, 44(6), 1502–1510. https://doi.org/10.1016/j.lwt.2011.01.003
Vimercati, W. C., Araújo, C. da S., Macedo, L. L., Fonseca, H. C., Guimarães, J. S., Abreu, L. R. de, & Pinto, S. M. (2020). Physicochemical, rheological, microbiological and sensory properties of newly developed coffee flavored kefir. Lwt, 123(October 2019), 109069. https://doi.org/10.1016/j.lwt.2020.109069
Vimercati, W. C., Macedo, L. L., Araújo, C. da S., Maradini Filho, A. M., Saraiva, S. H., & Teixeira, L. J. Q. (2020). Effect of storage time and packaging on cooking quality and physicochemical properties of pasta with added nontraditional ingredients. Journal of Food Processing and Preservation, e14637, 1–12. https://doi.org/10.1111/jfpp.14637
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Leandro Levate Macedo; Jefferson Luiz Gomes Corrêa; Hugo Calixto Fonseca; Cintia da Silva Araújo; Wallaf Costa Vimercati; Rômulo Marçal Gandia
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.