Caracterização e aproveitamento de farinha de resíduos de frutas e hortaliças para o desenvolvimento de alimentos funcionais
DOI:
https://doi.org/10.33448/rsd-v9i12.11034Palavras-chave:
Processamento sustentável; Farinha; Carboidratos; Microestrutura; Doces.Resumo
A farinha de frutas e resíduos vegetais (FVR) foi obtida a partir do resíduo sólido gerado no processamento total de frutas inteiras (3) e vegetais (8). O objetivo deste estudo foi analisar o perfil de carboidratos da farinha de FVR e propor estruturas de modificação química e enzimática para uso como ingrediente funcional. As propriedades como comportamento de sorção, conteúdo fenólico total e atividade antioxidante também foram avaliadas. Além disso, a farinha FVR foi aplicada na produção de balas. A farinha FVR apresentou apenas 1-kestose (GF2) como oligossacarídeos prebióticos e condição nativa, alteração da conformação de uma estrutura amorfa após diferentes condições de pH, que causou menor estabilidade da farinha FVR quando exposta a variações de aw, suportando apenas até aw = 0,6. O GAB foi o modelo mais adequado para construir isotermas de sorção. O conteúdo fenólico das amostras obtidas pelo processo enzimático foi superior ao encontrado na farinha FVR, amostra 10 (60,29 ± 15,12 mg) e os valores de atividade antioxidante 0,55 ± 0,04g amostra / g DPPH. O conteúdo fenólico da goma e dos doces de cristal, respectivamente, é de 0,289 ± 0,097 mg GAE.g-1 e 0,228 ± 0,011 mg GAE.g-1. Este estudo mostra que é possível promover o processamento viável e sustentável de alimentos sem geração de resíduos.
Referências
Acosta-Estrada, B. A.; Gutiérrez-Uribe, J. A; & Serna-Saldívar, S. O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46–55. https://doi.org/10.1016/j.foodchem.2013.11.093
Al-Muhtaseb, a. H.; McMinn, W. a. M; & Magee, T. R. a. (2002). Moisture Sorption Isotherm Characteristics of Food Products: A Review. Food and Bioproducts Processing, 80(2), 118–128. https://doi.org/10.1205/09603080252938753
Amaya-Cruz, D. M.; Rodríguez-González, S.; Pérez-Ramírez, I. F.; Loarca-Piña, G.,;Amaya-Llano, S.; Gallegos-Corona, M. A; & Reynoso-Camacho, R. (2015). Juice by-products as a source of dietary fibre and antioxidants and their effect on hepatic steatosis. Journal of Functional Foods, 17, 93–102. https://doi.org/10.1016/j.jff.2015.04.051
Andrade, R. M. S.; Ferreira, M. S. L; & Gonçalves, E. C. B. A. (2014). Functional capacity of flour obtained from residues of fruit and vegetables. International Food Research Journal, 21(4), 1675–1681.
Andrade, R. M. S.; Ferreira, M. S. L; & Gonçalves, É. C. B. A. (2016). Development and Characterization of Edible Films Based on Fruit and Vegetable Residues. Journal of Food Science, 81(2), E412–E418. https://doi.org/10.1111/1750-3841.13192
AOAC. (1990). Official Methods of Analysis. Association of Official Analytical Chemist, 15th(Volume 2).
AOAC. (2012). Official Methods of Analysis of AOAC International. Association of Official Analysis Chemists International, Method ce 2-66. https://doi.org/10.3109/15563657608988149
Arruda, H. S.; Pereira, G. A; & Pastore, G. M. (2017). Oligosaccharide profile in Brazilian Cerrado fruit araticum (Annona crassiflora Mart.). LWT - Food Science and Technology, 76, 278–283.
Brito, T. B.; Carrajola, J. F.; Gonçalves, E. C. B. A.; Martelli-Tosi, M; & Ferreira, M. S. L. (2019). Fruit and vegetable residues flours with different granulometry range as raw material for pectin-enriched biodegradable film preparation. Food Research International, 121, 412–421. https://doi.org/10.1016/J.FOODRES.2019.03.058
Cassano, A.; Conidi, C.; Ruby-Figueroa, R; & Castro-Muñoz, R. (2018). Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products. International Journal of Molecular Sciences, 19(351), 1–21. https://doi.org/10.3390/ijms19020351
Castro-Muñoz, R.; Boczkaj, G.; Gontarek, E.; Cassano, A; & Fíla, V. (2019). Membrane technologies assisting plant-based and agro-food by-products processing: A comprehensive review. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2019.12.003
Castro-Muñoz, R; & Fíla, V. (2018). MEMBRANE-BASED technologies as an emerging tool for separating high-added-value compounds from natural products. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2018.09.017
Castro-Muñoz, R.; Vlastimil, F; & Durán-Páramo, E. (2017). A Review of the Primary By-product ( Nejayote ) of the Nixtamalization During Maize Processing : Potential Reuses. Waste and Biomass Valorization, 0(0), 0. https://doi.org/10.1007/s12649-017-0029-4
Caurie, M. (2007). Hysteresis phenomenon in foods. International Journal of Food Science and Technology, 42(1), 45–49. https://doi.org/10.1111/j.1365-2621.2006.01203.x
Codex. (2001). Codex Alimentarius Commission Standards. CODEX STANDARD FOR HONEY. https://doi.org/10.1007/978-3-540-88242-8
Cypriano, D. Z.; da Silva, L. L; & Tasic, L. (2018). High value-added products from the orange juice industry waste. Waste Management, 79, 71–78. https://doi.org/https://doi.org/10.1016/j.wasman.2018.07.028
Damodaran, S.; Parkin, K. L; & Fennema, O. R. (2010). Quimica de Alimentos de Fennema. In Artmed (Ed.), Quimica de Alimentos de Fennema (4th ed.).
De Laurentiis, V., Corrado, S., & Sala, S. (2018). Quantifying household waste of fresh fruit and vegetables in the EU. Waste Management, 77, 238–251. https://doi.org/10.1016/J.WASMAN.2018.04.001
Fai, A. E. C.; Alves de Souza, M. R.; de Barros, S. T.; Bruno, N. V.; Ferreira, M. S. L.; Goncalves, T. C. B. D. A; & Branco de Andrade., Castello. (2016). Development and evaluation of biodegradable films and coatings obtained from fruit and vegetable residues applied to fresh-cut carrot (Daucus carota L.). Postharvest Biology and Technology, 112, 194–204. https://doi.org/10.1016/j.postharvbio.2015.09.021
FAO. (2016). El Estado Mundial de la Agricultura y la Alimentacion Cambio Climático. www.fao.org/publications
Ferreira, M. S. L., Santos, M. C. P., Moro, T. M. A., Basto, G. J., Andrade, R. M. S., & Gonçalves, É. C. B. A. (2015). Formulation and characterization of functional foods based on fruit and vegetable residue flour. Journal of Food Science and Technology, 52(2), 822–830. https://doi.org/10.1007/s13197-013-1061-4
Fidelis, M.; do Carmo, M. A. V.; Cruz, T. M.; Azevedo, L.; Myoda, T., Miranda, F., M.; Boscacci, M. M.; Sant’Ana, A. S.; Inês Genovese, M.; Young Oh, W.; Wen, M.; Shahidi, F.; Zhang, L.; Franchin, M.; Alencar, S. M.; Luiz Rosalen, P; & Granato, D. (2020). Camu-camu seed (Myrciaria dubia) – From side stream to anantioxidant, antihyperglycemic, antiproliferative, antimicrobial, antihemolytic, anti-inflammatory, and antihypertensive ingredient. Food Chemistry, 310, 125909. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.125909
Figueiredo, V. R. G.; Yamashita, F.; Vanzela, A. L. L.; Ida, E. I; & Kurozawa, L. E. (2018). Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara. Journal of Food Science and Technology, 55(4), 1508–1517. https://doi.org/10.1007/s13197-018-3067-4
Gonçalves, E. C. B. A.; Lozano-Sanchez, J.; Gomes, S.; Ferreira, M. S. L.; Cameron, L. C; & Segura-Carretero, A. (2018). Byproduct Generated During the Elaboration Process of Isotonic Beverage as a Natural Source of Bioactive Compounds. Journal of Food Science, 83(10), 2478–2488. https://doi.org/10.1111/1750-3841.14336
Hernández-Hernández, K. A.; Solache-Ríos, M; & Díaz-Nava, M. C. (2013). Removal of brilliant blue FCF from aqueous solutions using an unmodified and iron-modified bentonite and the thermodynamic parameters of the process. Water, Air, and Soil Pollution, 224(5). https://doi.org/10.1007/s11270-013-1562-9
Isah, S.; Oshodi, A. A; & Atasie, V. N. (2017). Physicochemical properties of cross linked acha (digitaria exilis) starch with citric acid. Chemistry International, 3(2), 150–157. https://doi.org/10.31221/OSF.IO/USYRC
Kosseva, M. R. (2009). Chapter 3 - Processing of Food Wastes. In Advances in Food and Nutrition Research (1st ed., Vol. 58, Issue 09). Elsevier Inc. https://doi.org/10.1016/S1043-4526(09)58003-5
Kowalska, H.; Czajkowska, K.; Cichowska, J; & Lenart, A. (2017). What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science & Technology, 67, 150–159. https://doi.org/10.1016/J.TIFS.2017.06.016
L’homme, C.; Peschet, J. L.; Puigserver, A; & Biagini, A. (2001). Evaluation of fructans in various fresh and stewed fruits by high-performance anion-exchange chromatography with pulsed amperometric detection. Journal of Chromatography A, 920, 291–297.
Laufenberg, G.; Kunz, B; & Nystroem, M. (2003). Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresource Technology, 87(2), 167–198. http://www.ncbi.nlm.nih.gov/pubmed/12765356
Maqsood, S.; Adiamo, O.; Ahmad, M; & Mudgil, P. (2020). Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chemistry, 308, 125522. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.125522
Meyer, A. S.; Dam, B. P; & Lærke, H. N. (2009). Enzymatic solubilization of a pectinaceous dietary fiber fraction from potato pulp: Optimization of the fiber extraction process. Biochemical Engineering Journal, 43(1), 106–112. https://doi.org/10.1016/j.bej.2008.09.006
Mirabella, N.; Castellani, V; & Sala, S. (2014). Current options for the valorization of food manufacturing waste: a review. Journal of Cleaner Production, 65, 28–41. https://doi.org/10.1016/j.jclepro.2013.10.051
Mochamad Busairi, A. (2008). Conversion of pineapple juice waste into lactic acid in batch and fed-batch fermentation systems. Reaktor, 12(2), 98. https://doi.org/10.14710/reaktor.12.2.98-101
Mudgil, D.; Barak, S; & Khatkar, B. S. (2014). Guar gum: processing, properties and food applications—A Review. Journal of Food Science and Technology, 51(3), 409–418. https://doi.org/10.1007/s13197-011-0522-x
Oliveira, D. M.; Clemente, E; & da Costa, J. M. C. (2014). Hygroscopic behavior and degree of caking of grugru palm (Acrocomia aculeata) powder. Journal of Food Science and Technology, 51(10), 2783–2789. https://doi.org/10.1007/s13197-012-0814-9
Otemuyiwa, I. O.; Williams, M. F; & Adewusi, S. A. (2017). Antioxidant activity of health tea infusions and effect of sugar and milk on in-vitro availability of phenolics in tea, coffee and cocoa drinks. Nutrition & Food Science, 47(4), 2017. https://doi.org/10.1108/NFS-08-2016-0134
Park, S. Y; & Yoon, K. Y. (2015). Enzymatic production of soluble dietary fiber from the cellulose fraction of Chinese cabbage waste and potential use as a functional food source. Food Science and Biotechnology, 24(2), 529–535. https://doi.org/10.1007/s10068-015-0069-0
Rajha, H. N.; El Kantar, S., Afif, C.; Boussetta, N.; Louka, N.; Maroun, R. G; & Vorobiev, E. (2018). Selective multistage extraction process of biomolecules from vine shoots by a combination of biological, chemical, and physical treatments. Comptes Rendus Chimie, 21(6), 581–589. https://doi.org/10.1016/J.CRCI.2018.02.013
Rosset, M.; Prudencio, S. H; & Beléia, A. D. P. (2012). Viscozyme L action on soy slurry affects carbohydrates and antioxidant properties of silken tofu. Food Science and Technology International, 18(6), 531–538. https://doi.org/10.1177/1082013211433076
Sá Mendes, N.; Favre, L. C.; Rolandelli, G.; Ferreira, C. dos S.; Gonçalves, É. C. B. A; & Buera, M. del P. (2019). Flour from “fruits and vegetables” waste with addition of a South‐American pepper ( Capsicum baccatum ) proposed as food ingredient. International Journal of Food Science & Technology, ijfs.14358. https://doi.org/10.1111/ijfs.14358
Sá Mendes, N.; Santos, M. C. P.; Santos, M. C. B.; Cameron, L. C.; Ferreira, M. S. L; & Gonçalves, É. C. B. A. (2019). Characterization of pepper (Capsicum baccatum) - A potential functional ingredient. LWT, 112, 108209. https://doi.org/10.1016/J.LWT.2019.05.107
Sancho, R. A. S.; Souza, J. D. R. P.; Lima, F. A. De; & Pastore, G. M. (2017). Evaluation of oligosaccharide profiles in selected cooked tubers and roots subjected to in vitro digestion. LWT - Food Science and Technology, 76, 270–277. https://doi.org/10.1016/j.lwt.2016.07.046
Santos, M. C. P; & Gonçalves, É. C. B. A. (2016). Effect of different extracting solvents on antioxidant activity and phenolic compounds of a fruit and vegetable residue flour. Scientia Agropecuaria, 7(1), 7–14.
Sette, P.; Fernandez, A.; Soria, J., Rodriguez, R., Salvatori, D; & Mazza, G. (2020). Integral valorization of fruit waste from wine and cider industries. Journal of Cleaner Production, 242, 118486. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.118486
Shadrach, I.; Banji, A; & Adebayo, O. (2020). Nutraceutical potential of ripe and unripe plantain peels: A comparative study. Chemistry International, 6(2), 83–90. https://doi.org/10.5281/ZENODO.3364199
Shea, N. O.; Arendt, E. K; & Gallagher, E. (2012). Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innovative Food Science and Emerging Technologies, 16, 1–10. https://doi.org/10.1016/j.ifset.2012.06.002
Shirzad, M.; Kazemi Shariat Panahi, H.; Dashti, B. B.; Rajaeifar, M. A.; Aghbashlo, M; & Tabatabaei, M. (2019). A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran. Renewable and Sustainable Energy Reviews, 111, 571–594. https://doi.org/https://doi.org/10.1016/j.rser.2019.05.011
Singleton, V. L; & Rossi, S. A. (1965). Colorimetric of total phenolics with phosphomolibicphosphotungstic acid reagents. J. Enol. Vitic., 16(3), 144–158. https://doi.org/10.12691/ijebb-2-1-5
Timmermann, E. O.; Chirife, J; & Iglesias, H. A. (2001). Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? Journal of Food Engineering, 48, 19–31.
Varadharajan, V.; Shanmugam, S; & Ramaswamy, A. (2017). Model generation and process optimization of microwave-assisted aqueous extraction of anthocyanins from grape juice waste. Journal of Food Process Engineering, 40(3), e12486. https://doi.org/10.1111/jfpe.12486
Waterhouse, G. I. N.; Sun-Waterhouse, D.; Su, G.; Zhao, H; & Zhao, M. (2017). Spray-Drying of Antioxidant-Rich Blueberry Waste Extracts; Interplay Between Waste Pretreatments and Spray-Drying Process. Food and Bioprocess Technology, 10(6), 1074–1092. https://doi.org/10.1007/s11947-017-1880-9
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Nathania de Sá Mendes; Monica Cristine Pereira dos Santos; Mariana Pumar Seljan ; Fernanda Carmo Silva; Pedro Paulo Saldanha Coimbra ; Jane Delane Reis Pimentel Souza; Ana Elizabeth Cavalcante Fai; Haroldo Yukio Kawaguti ; Suellen Gomes Moreira ; Édira Castello Branco de Andrade Gonçalves
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.