Aumento da atividade anticoagulante da varfarina e sua potencial interação com o extrato aquoso de goji berry (Lycium barbarum L.) em ratos Wistar

Autores

DOI:

https://doi.org/10.33448/rsd-v9i12.11070

Palavras-chave:

Assistência à saúde; Interações alimento-droga; Tempo de protrombina; Tromboembolia venosa.

Resumo

O consumo de goji berry (Lycium barbarum L.) tem despertado interesse mundial devido suas excelentes propriedades nutricionais e funcionais, relacionada à diminuição do risco de desenvolvimento de doenças crônicas decorrentes do estresse oxidativo, o classifica como um “super alimento”. Assim, o objetivo deste estudo foi avaliar os efeitos do extrato aquoso de goji berry nos parâmetros hematológicos e bioquímicos em ratos Wistar tratados com varfarina. A concentração de fenóis totais foi determinada pelo reagente Folin-Ciocalteau, enquanto a capacidade antioxidante determinada pelo ensaio DPPH. Os animais foram distribuídos em quatro grupos experimentais: água destilada (veículo – controle negativo); alimentados diariamente com o extrato (0,18 g.Kg-1); tratados diariamente com água destilada e varfarina (0,5 mg.Kg-1 – controle positivo) e aqueles tratados concomitantemente com o extrato e varfarina, durante sete dias. Nossos resultados demonstraram elevada quantidade de polifenóis (6,19 ± 0,3 mg EAG.g-1) no extrato aquoso a 10 % (m.v-1) e sugerem considerável atividade antioxidante (IC50 1068 µg.mL-1). Não observamos diferenças significativas entre os perfis bioquímicos e hematológicos, ou sequer sinais de toxicidade do extrato quando administrado sozinho. Os dados provenientes do uso concomitante com a varfarina são impressionantes e mostram aumento significante no tempo de protombina, com a potencialidade de sangramento. Coletivamente, essas observações sugerem a propensão de uma interação clinicamente importante entre a varfarina e o Lycium barbarum L., o que compromete a segurança deste medicamento e lança luz para pesquisas futuras relacionadas a uma compreensão mais profunda dos mecanismos moleculares envolvidos.

Referências

Abuduaibifu, A., & Tamer, C. E. (2019). Evaluation of physicochemical and bioaccessibility properties of goji berry kombucha. Journal of Food Processing and Preservation, 43(9), e14077. https://doi.org/10.1111/jfpp.14077.

Ahad, H., Jin, H., Liu, Y., Wang, J., Sun, G., Liang, X., & Aisa, H. A. (2020). Chemical profiling of spermidines in goji berry by strong cation exchange solid-phase extraction (SCXSPE) combined with ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS/MS). Journal of Chromatography B, 1137, 121923. https://doi.org/ 10.1016/j.jchromb.2019.121923.

Alara, O. R., Mudalip, S. K. A., Abdurahman, N. H., Mahmoud, M. S., & Obanijesu, E. O. (2019). Data on parametric influence of microwave-assisted extraction on the recovery yield, total phenolic content and antioxidant activity of Phaleria macrocarpa fruit peel extract. Chemical Data Collections, 24(1), 100277-100284. https://doi.org/10.1016/j.cdc.2019.100277.

Amagase, H., & Farnsworth, N. R. (2011). A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Research International, 44(7), 1702-1717. https://doi.org/10.1016/

j.foodres.2011.03.027.

Annadurai, P., Annadurai, V., Yongkun, M., Pugazhendhi, A., & Dhandayuthapani, K. (2021). Phytochemical composition, antioxidant and antimicrobial activities of Plecospermum spinosum Trecul. Process Biochemistry, 100(1), 107-116. https://doi.org/10.1016/j.procbio.2020.09.031.

Baker, W., Cios, D. A., Sander, S. D., & Coleman, C. I. (2009). Meta-analysis to assess the quality of warfarin control in atrial fibrillation patients in the United States. Journal of Managed Care Pharmacy, 15(3), 244-252. https://doi.org/ 10.18553/jmcp.2009.15.3.244.

Benchennouf, A., Grigorakis, S., Loupassaki, S., & Kokkalou, E. (2016). Phytochemical analysis and antioxidant activity of Lycium barbarum (Goji) cultivated in Greece. Pharmaceutical Biology, 55(1), 596-602. https://doi.org/10.1080/13880209.2016.1265987.

Blasi, F., Montesano, D., Simonetti, M. S., & Cossignani, L. (2017). A simple and rapid extraction method to evaluate the fatty acid composition and nutritional value of goji berry lipid. Food Analytical Methods, 10(4), 970-979. https://doi.org/10. 1007/s12161-016-0652-x.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.

Cañizares, L. C. C., Timm, N. S., Ramos, A. H., Neutzling, H. P., Ferreira, C. D., & Oliveira, M. (2020). Effects of moisture content and expansion method on the technological and sensory properties of white popcorn. International Journal of Gastronomy and Food Science, 22, 100282. https://doi.org/10.1016/j.ijgfs.2020. 100282.

Conidi, C., Drioli, E., & Cassano, A. (2020). Coupling ultrafiltration-based processes to concentrate phenolic compounds from aqueous goji berry extracts. Molecules, 25(16), 3761. https://doi.org/10.3390/molecules25163761.

Denger, A. P. F. L., Kawano, L. O., Paula, R. A. O., Santos, L. B., Rodrigues, M. R., Paula, F. B. A., Duarte, S. M. S. Determinação da atividade antioxidante e de fenóis totais do pequi (Caryocar brasiliense Camb.) Research, Society and Development, 9(11), e 2859119781. https://doi.org/10.33448/rsd-v9i11.9781.

Donno, D., Beccaro, G. L., Mellano, M. G., Cerutti, A. K., & Bounous, G. (2015). Goji berry fruit (Lycium spp.): antioxidant compound fingerprint and bioactivity evaluation. Journal of Functional Foods, 18(B), 1070-1085. https://doi.org/10.1016/ j.jff.2014.05.020.

European Pharmacopoeia Commission (2019). Barbary wolfberry fruit: Lycii fructus. In: European Pharmacopoeia Commission. European pharmacopoeia. (10. Ed., pp. 1332-1333). Strasbourg: Council of Europe.

Food Ingredients & Packaging (2019, Jun. 9). Generally Recognized as Safe (GRAS). Recuperado em: 04 de dezembro 2020, de https://www.fda.gov/ food/food-ingredientspackaging/generally-recognized-safe-gras.

Forino, M., Tartaglione, L., Dell’Aversano, C., & Ciminiello, P. (2016). NMR-based identification of the phenolic profile of fruits of Lycium barbarum (goji berries). Isolation and structural determination of a novel N-feruloyl tyramine dimer as the most abundant antioxidant polyphenol of goji berries. Food Chemistry, 194, 1254-1259. https://doi.org/10.1016/j.foodchem.2015.08.129.

Ge, X., Jing, L., Zhao, K., Su, C., Zhang, B., Zhang, Q., Han, L., Yu, X., & Li, W. (2021, Jan 15). The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chemistry, 335, 127655.

https://doi.org/10.1016/j.foodchem.2020.127655.

Gobbo-Neto, L., & Lopes, N. P. (2007). Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Química Nova, 30(2), 374-381. http://dx.doi.org/10.1590/S0100-40422007000200026. Recuperado em 15 out. 2020 de https://www.scielo.br/pdf/qn/v30n2/25.pdf.

Guo, Y., Amorati, R., & Valgimigli, L. (2020, Oct. 26). Synergic antioxidant activity of γterpinene with phenols and polyphenols enabled by hydroperoxyl radicals. Food Chemistry. https://doi.org/10.1016/j.foodchem.2020.128468.

Hatano, T., Kagawa, H., Yasuhara, T., & Okuda T. (1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavanging effects. Chemical Pharmaceutical Bulletin, 36(6), 2090-2097. https://doi.org/10.1248/cpb.36.2090.

Inbaraj, B. S., Lu, H., Hung, C. F., Wu, W. B., Lin, C. L., & Chen, B. H. (2008). Determination of carotenoids and their esters in fruits of Lycium barbarum Linnaeus by HPLC DAD-APCI MS. Journal of Pharmaceutical and Biomedical Analysis, 47(4-5), 812-818. https://doi.org/10.1016/j.jpba.2008.04.001.

Kaminsky, L. S., & Zhang, Z.-Y. (1997). Human P450 metabolism of warfarin. Pharmacology & Therapeutics, 73(1), 67-74. https://doi.org/10.1016/s0163-7258(96)00140-4.

Lam, A. Y., Elmer, G. W., & Mohutsky, M. A. (2001). Possible interaction between Warfarin and Lycium Barbarum L. Annals of Pharmacotherapy, 35(10), 1199-1201. https://doi.org/10.1345/aph.1Z442.

Le, K., Chiu, F., & Ng, K. (2007). Identification and quantification of antioxidants in Fructus lycii. Food Chemistry, 105(1), 353-363. https://doi.org/10.1016/j. foodchem.2006.11.063.

Leite, P. M., Castilho, R. O., Ribeiro, A. L. P., & Martins, M. A. P. (2016). Consumption of medicinal plants by patients with heart diseases at a pharmacist-managed anticoagulation clinic in Brazil. International Journal of Clinical Pharmacy, 38(2), 223-227. https://doi.org/10.1007/s11096-016-0270-0.

Leung, H., Hung, A., Hui, A. C. F., & Chan, T. Y. K. (2008). Warfarin overdose due to the possible effects of Lycium barbarum L. Food and Chemical Toxicology, 46(5), 1860-1862. https://doi.org/10.1016/j.fct.2008. 01.008.

Li, H., Zhang, C., Fan, R., Sun, H., Xie, H., Luo, J., Wang, Y., Lv, H., Tang, T. (2016). The effects of Chuanxiong on the pharmacokinetics of warfarin in rats after biliary drainage. Journal of Ethnopharmacology, 193, 117-124. https://doi.org/10.1016/j.jep.2016.08.005.

Llorent-Martínez, E. J., Fernández-de Córdova, M. L., Ortega-Barrales, P., & Ruiz-Medina, A. (2013). Characterization and comparison of the chemical composition of exotic superfoods. Microchemical Journal, 110, 444-451. https://doi.org/10.

/j.microc.2013.05.016.

Lopatriello, A., Previtera, R., Pace, S., Werner, M., Rubino, L., Werz, O., TaglialatelaScafatia, O., & Forino, M. (2017). NMR-based identification of the major bioactive molecules from an Italian cultivar of Lycium barbarum. Phytochemistry, 144, 52-57. https://doi.org/10.1016/j.phytochem.2017.08.016.

Lou, X., Xu, H., Hanna, M., & Yuan, L. (2020). Identification and quantification of free, esterified, glycosylated and insoluble-bound phenolic compounds in hawthorn berry fruit (Crataegus pinnatifida) and antioxidant activity evaluation. LWT, 130, 109643. https://doi.org/10.1016/j.lwt.2020. 109643.

Mocan, A., Moldovan, C., Zengin, G., Bender, O., Locatelli, M., Simigiotis, M., Atalay, A., Vodnar, D. C., Rohn, S., & Crisan, G. (2018). UHPLC-QTOF-MS analysis of bioactive constituents from two Romanian Goji (Lycium barbarum L.) berries cultivars and their antioxidant, enzyme inhibitory, and real-time cytotoxicological evaluation. Food and Chemical Toxicology, 115, 414-424. https://doi.org/10.1016/j.fct.2018.01.054.

Montesano, D., Cossignani, L., Giua, L., Urbani, E., Simonetti, M. S., & Blasi, F. (2016). A simple HPLC-ELSD method for sugar analysis in Goji Berry. Journal of Chemistry, 2016(3), 1-5. https://doi.org/10.1155/2016/6271808.

Navajas-Porras, B., Pérez-Burillo, S., Morales-Pérez, J., Rufián-Henares, J. A., & Pastoriza, S. (2020). Relationship of quality parameters, antioxidant capacity and total phenolic content of EVOO with ripening state and olive variety. Food Chemistry, 325(1), 126926-126939. https://doi.org/10.1016/j.foodchem.2020.126926.

Nieva-Rchevarría, B., Goicoechea, E., & Guillén, M. D. (2017). Effect of liquid smoking on lipid hydrolysis and oxidation reactions during in vitro gastrointestinal digestion of European sea bass. Food Research International, 97(1), 51-61. https://doi.org/10.1016/j.foodres.2017.03.032.

Olszowy, M. (2019). What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiology and Biochemistry, 144(1), 135-143. https://doi.org/10.1016/j.plaphy.2019.09.039.

Pedro, A. C., Sánchez-Mata, M-C., Pérez-Rodríguez, M. L., Cámara, M., López-Colón, J. L., Bach, F., Bellettini, M., Haminiuk, C. W. I. (2019). Qualitative and nutritional comparison of goji berry fruits produced in organic and conventional systems. Scientia Horticulturae, 257(1), 108660-108668. http://dx.doi.org/10.1016/j.scienta.2019.108660.

Pereira, A. S., Shitsuka, M. S., Pereira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_MetodologiaPesquisa-Cientifica.pdf?sequence=1.

Piatkov, I., Rochester, C., Jones, T., & Boyages, S. (2010). Warfarin toxicity and individual variability: clinical case. Toxins, 2(11), 2584-2592. https://doi.org/ 10.3390/toxins2112584.

Pirmohamed, M., Kamali, F., Daly, A. K., & Wadelius, M. (2015). Oral anticoagulation: a critique of recent advances and controversies. Trends in Pharmacological Sciences, 36(3), 153-163. https://doi.org/10.1016/j.tips. 2015.01.003.

Pogačnik, L., Ota, A., & Ulrih, N. P. (2020). An overview of crucial dietary substances and their modes of action for prevention of neurodegenerative diseases. Cells, 9(3), 576. https://doi.org/10.3390/cells9030576.

Protti, M., Gualandi, I., Mandrioli, R., Zappoli, S., Tonelli, D., & Mercolini, L. (2017). Analytical profiling of selected antioxidants and total antioxidant capacity of goji (Lycium spp.) berries. Journal of Pharmaceutical and Biomedical Analysis, 143, 252-260. https://doi.org/10.1016/j.jpba.2017.05.048.

Qian, J.-Y., Liu, D., & Huang, A. (2004). The efficiency of flavonoids in polar extracts of Lycium chinense Mill fruits as free radical scavenger. Food Chemistry, 87(2), 283-288. https://doi.org/10.1016/j.foodchem.2003.11.008.

Quick, A. J., Stanley-Bronwn, M., & Bancroft, F. W. (1935). A study of the coagulation defect in hemophilia and in jaundice. American Journal of the Medical Sciences, 190(4), 501-511. https://doi.org/10.1055/s-0038-1650068.

Rasool, A., Zulfajric, M., Gulzard, A., Hanafiahef, M. M., Unnisab, S. A., & Mahbooba, M. (2020). In vitro effects of cobalt nanoparticles on aspartate aminotransferase and alanine aminotransferase activities of wistar rats. Biotechnology Reports, 26, e00453. https://doi.org/10.1016/j.btre.2020.e00453.

Ren, Z., Na, L., Xu, Y., Rozati, M., Wang, J., Xu, J., Sun, C., Vidal, K., Wu, D., & Meidani, S. N. (2012). Dietary supplementation with lacto-wolfberry enhances the immune response and reduces pathogenesis to influenza infection in mice. The Journal of Nutrition. 142(8), 1596-1602. https://doi.org/10.3945/jn.112.159467.

Rivera, C. A., Ferro, C. L., Bursua, A. J., & Gerber, B. S. (2012). Probable interaction between Lycium barbarum (Goji) and Warfarin. Pharmacotherapy, 32(3), 50-53. https://doi.org/10.1002/j.1875-9114.2012.01018.x.

Rocchetti, G., Chiodelli, G., Giuberti, G., Ghisoni, S., Baccolo, G., Biasi, F, Montesano, D., Trevisan, M., & Lucini, L. (2018). UHPLC-ESI-QTOF-MS profile of polyphenols in Goji berries (Lycium barbarum L.) and its dynamics during in vitro gastrointestinal digestion and fermentation. Journal of Functional Foods, 40, 564-572. https://doi.org/10.1016/j.jff.2017.11.042.

Rudasill, S. E., Liu, J., & Kamath, A. F. (2019). Revisiting the International Normalized Ratio (INR) threshold for complications in primary total knee arthroplasty: an analysis of 21,239 cases. The Journal of Bone and Joint Surgery: American Volume, 101(6), 514-522. https://doi.org/10.2106/JBJS.18.00771.

Sherkatolabbasieh, H., Firouzi, M., & Shafizadeh, S. (2020). Evaluation of platelet count, erythrocyte sedimentation rate and C-reactive protein levels in paediatric patients with inflammatory and infectious disease. New Microbes and New Infections, 37, 100725. https://doi.org/10.1016/j.nmni.2020.100725.

Silva, V. M., Rezende, D. C., Garcia, E. S., Cavalheiro, C., & Strunz, C. C. (2020). Effect of anticoagulant adjustment on prothrombin time test using two different PT reagents in patients with elevated hematocrit. Practical Laboratory Medicine, 22, e00177. https://doi.org/10.1016/j.plabm.2020.e00177.

Skenderidis, P., Lampakis, D., Giavasis, I., Leontopoulos, S., Petrotos, K., Hadjichristodoulou, C., & Tsakalof, A. (2019). Chemical properties, fatty-acid composition, and antioxidant activity of Goji Berry (Lycium barbarum L. and Lycium chinense Mill.) fruits. Antioxidants, 8(3), 60. https://doi.org/10.3390/ antiox8030060.

Tang, W.-M., Chan, E., Kwok, C.-Y., Lee, Y.-K., Wu, J.-H., Wan, C.-W., Chan, R. Y.-K., Yu, P. H.-F., & Chan, S.-W. (2012). A review of the anticancer and immunomodulatory effects of Lycium barbarum fruit. Inflammopharmacology, 20, 307-314.

https://doi.org/10.1007/s10787-011-0107-3.

Tang, H.-L., Chen, C., Wang, S.-K., & Sun, G.-J. (2015). Biochemical analysis and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L. International Journal of Biological Macromolecules, 77, 235-242.

https://doi.org/10.1016/j.ijbiomac.2015.03.026.

Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Analytical Biochemistry, 524, 13-30. https://doi.org/10.1016/j.ab.2016.10.021.

Ulbricht, C., Chao, W., Costa, D., Rusie-Seamon, E., Weissner, W., & Woods, J. (2008). Clinical evidence of herb-drug interactions: a systematic review by the natural standard research collaboration. Current Drug Metabolism, 9(10), 1063-1120. https://doi.org/10.2174/138920008786927785.

Wang, C. C., Chang, S. C., Inbaraj, B.S., & Chen, B. H. (2010). Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chemistry, 120(1), 184-192. https://doi.org/10.1016/j.foodchem.2009.10.005.

Wang, H., Zhang, S., Shen, Q., & Zhu, M.-J. (2019). A metabolomic explanation on beneficial effects of dietary Goji on intestine inflammation. Journal of Functional Foods, 53, 109-114. https://doi.org/10.1016/j.jff.2018. 12.014.

Winterbourn, C. C., Gutteridge, J. M., & Halliwell, B. (1985). Doxorubicin dependent lipid peroxidation at low partial pressures of O2. Journal of Free Radicals in Biology and Mededicine, 1(1), 43-49. https://doi.org/10.1016/0748-5514(85)90028-5.

Woisk, R. G., & Salatino, A. (1998). Analisys of própolis: some parameters and procedures for chemical quality control. Journal of Apicultural Research, 37(2), 99-105. https://doi.org/10.1080/00218839.1998.11100961.

Wojdyło, A., Nowicka, P., & Bąbelewski, P. (2018). Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. Journal of Functional Foods, 48, 632-642. https://doi.org/ 10.1016/j.jff.2018.07.061.

Wu, D. T., Guo, H., Lin, S., Lam, S. C., Zhao, L., Lin, D. R., Qin, Wen. (2018). Review of the structural characterization, quality evaluation, and industrial application of Lycium barbarum polysaccharides. Trends in Food Science & Technology, 79, 171-183. https://doi.org/10.1016/j.tifs.2018.07.016.

Yang, X., Bai, H., Li, W. C. J., Zhou, Q., Wang, Y., Han, J., Zhu, X., Dong, M., & Hu, D. (2013). Lycium barbarum polysaccharides reduce intestinal ischemia/reperfusion injuries in rats. Chemico-Biological Interactions, 204(3), 166-172.

https://doi.org/10.1016/j.cbi.2013.05.010.

Yang, R., Zhao, C., Chen, X., Chan, S. & Wu, J. (2015). Chemical properties and bioactivities of Goji (Lycium barbarum) polysaccharides extracted by different methods. Journal of Functional Foods, 17, 903-909. tps://doi.org/10.1016/j.jff. 2015.06.045.

Yao, R., Heinrich, M., & Weckerle, C. S. (2018). The genus Lycium as food and medicine: a botanical, ethnobotanical and historical review. Journal of Ethnopharmacology, 212, 50-66. https://doi.org/10.1016/j.jep.2017.10.010.

Zhang, J., Tian, L. & Xie, B. (2015). Bleeding due to a probable interaction between warfarin and Gouqizi (Lycium Barbarum L.). Toxicology Reports, 2, 1209-1212. https://doi.org/10.1016/j.toxrep.2015.08.011.

Zhang, G.-M., Zhang, G.-M., Hu, S., Peng, Y.-F., & Gu, B. (2020). Is testing of aspartate aminotransferase necessary along with every alanine aminotransferase for health check in elderly individuals? Clinica Chimica Acta: International Journal of Clinical Chemistry, 507, 224-227. https://doi.org/10.1016/j.cca.2020.05.003.

Zhang, X., Li, X., Su, M., Du, J., Zhou, H., Li, X., & Ye, Z. (2020). A comparative UPLC-QTOF/MS-based metabolomics approach for distinguishing peach (Prunus persica (L.) Batsch) fruit cultivars with varying antioxidant activity. Food Research International, 137(1), 109531-109543. https://doi.org/10.1016/j.foodres.2020.109531.

Žlabur, J. S., Žutić, I., Radman, S., Pleša, M., Brnčić, M., Barba, F. J., Rochetti, G., Lucini, L., Lorenzo, J. M., Domíngez, R., Brnčić, S. R., Galić, A., & Voća, S. (2020). Effect of different green extraction methods and solvents on bioactive components of chamomile (Matricaria chamomilla L.) flowers. Molecules, 25(4), 810. https://doi.org/10.3390/molecules25040810.

Downloads

Publicado

24/12/2020

Como Citar

OLIVEIRA, G. A. de .; CAMILO, M. A.; MARQUES, L. G. .; OLIVEIRA, C. M. de .; FIGUEIREDO, S. A. .; SANTOS, L. B.; PAULA, R. A. de O.; PAULA, F. B. de A. .; RODRIGUES, M. R.; DUARTE, S. M. da S. Aumento da atividade anticoagulante da varfarina e sua potencial interação com o extrato aquoso de goji berry (Lycium barbarum L.) em ratos Wistar. Research, Society and Development, [S. l.], v. 9, n. 12, p. e29591211070, 2020. DOI: 10.33448/rsd-v9i12.11070. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11070. Acesso em: 23 nov. 2024.

Edição

Seção

Ciências da Saúde