Estado nutricional e composição corporal em indivíduos com sobrepeso ou obesidade usando indicadores usuais e não-usuais
DOI:
https://doi.org/10.33448/rsd-v10i1.11339Palavras-chave:
Composição corporal; Estado nutricional; Risco cardiometabólico; Avaliação.Resumo
Objetivo: o objetivo deste estudo foi explorar o estado nutricional em adultos de acordo com os componentes usuais e não usuais da composição corporal. Métodos: trata-se de um estudo descritivo envolvendo uma amostra de 274 brasileiros adultos do sul do país. Os participantes tiveram a composição corporal avaliada por bioimpedanciômetro octapolar (InBody 520 - Biospace) e os parâmetros antropométricos de acordo com o padrão da OMS. Os dados foram analisados pela estatística descritiva e inferencial com o software SPSS versão 22.0. Resultados: Os participantes foram agrupados por estado nutricional e sexo. Houve diferença estatística entre os grupos (estado nutricional e sexo) em todas as variáveis, exceto idade e estatura. A correlação entre as variáveis também foi significativa, exceto para a Massa Corporal Magra e Percentual de Gordura Corporal (MCM vs PGC) e para a Proporção de Gordura e Massa Corporal Magra (PG vs MCM). Considerações finais: Os resultados mostraram que os parâmetros usuais e não usuais da composição corporal estão relacionados (a maioria) e foram mais fortemente relacionados no grupo feminino.
Referências
Aghili, R., Malek, M., Valojerdi, A. E., Banazadeh, Z., Najafi, L., & Khamseh, M. E. (2014). Body composition in adults with newly diagnosed type 2 diabetes: Effects of metformin. Journal of Diabetes and Metabolic Disorders, 13(1). https://doi.org/10.1186/s40200-014-0088-z
Andy Field. (2009). Discovering Statistics using SPSS Statistics. SAGE Publications, 66, 822. http://www.amazon.com/Discovering-Statistics-using-IBM-SPSS/dp/1446249182
Auyeung, T. W., Lee, J. S. W., Leung, J., Kwok, T., Leung, P. C., & Woo, J. (2010). Survival in older men may benefit from being slightly overweight and centrally obese-a 5-year follow-up study in 4,000 older adults using DXA. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 65(1), 99–104. https://doi.org/10.1093/gerona/glp099
Batsis, J. A., Mackenzie, T. A., Bartels, S. J., Sahakyan, K. R., Somers, V. K., & Jimenez, F. L.-. (2016). Diagnostic Accuracy of Body Mass Index to Identify Obesity in Older Adults: NHANES 1999–2004. Int J Obes (Lond)., 40(5), 761–767. https://doi.org/10.1038/ijo.2015.243.Diagnostic
Beals, J. W., Sukiennik, R. A., Nallabelli, J., Emmons, R. S., Van Vliet, S., Young, J. R., Ulanov, A. V., Li, Z., Paluska, S. A., De Lisio, M., & Burd, N. A. (2016). Anabolic sensitivity of postprandial muscle protein synthesis to the ingestion of a protein-dense food is reduced in overweight and obese young adults. American Journal of Clinical Nutrition, 104(4), 1014–1022. https://doi.org/10.3945/ajcn.116.130385
Cesari, M., Pahor, M., Lauretani, F., Zamboni, V., Bandinelli, S., Bernabei, R., Guralnik, J. M., & Ferrucci, L. (2009). Skeletal muscle and mortality results from the InCHIANTI study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 64(3), 377–384. https://doi.org/10.1093/gerona/gln031
Dada, R. P., Magnani Branco, B. H., Oliveira Terra, C. M. de, Brito Lazarin, S. P., Hintze, L. J., & Junior, N. N. (2018). Nutritional status and cardiometabolic risk in women: Relationship with usual and non-usual components of body composition. Journal of Physical Education (Maringa), 29(1). https://doi.org/10.4025/jphyseduc.v29i1.2935
Di Angelantonio, E., Bhupathiraju, S. N., Wormser, D., Gao, P., Kaptoge, S., de Gonzalez, A. B., Cairns, B. J., Huxley, R., Jackson, C. L., Joshy, G., Lewington, S., Manson, J. A. E., Murphy, N., Patel, A. V., Samet, J. M., Woodward, M., Zheng, W., Zhou, M., Bansal, N., … Hu, F. B. (2016). Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. The Lancet, 388(10046), 776–786. https://doi.org/10.1016/S0140-6736(16)30175-1
Diemer, F. S., Brewster, L. M., Haan, Y. C., Oehlers, G. P., van Montfrans, G. A., & Nahar-van Venrooij, L. M. W. (2019). Body composition measures and cardiovascular risk in high-risk ethnic groups. Clinical Nutrition, 38(1), 450–456. https://doi.org/10.1016/j.clnu.2017.11.012
Eisner, M. D., Blanc, P. D., Sidney, S., Yelin, E. H., Lathon, P. V., Katz, P. P., Tolstykh, I., Ackerson, L., & Iribarren, C. (2007). Body composition and functional limitation in COPD. Respiratory Research, 8. https://doi.org/10.1186/1465-9921-8-7
Flegal, K. M., Kit, B. K., Orpana, H., & Graubard, B. (2013). Association of all-cause mortality with overweight and obesity using standard body mass index categories. A systematic review and meta-analysis. British Dental Journal, 214(3), 113–113. https://doi.org/10.1038/sj.bdj.2013.131
Forbes, G. B. (2000). Body fat content influences the body composition response to nutrition and exercise. Annals of the New York Academy of Sciences, 904, 359–365. https://doi.org/10.1111/j.1749-6632.2000.tb06482.x
Guillet, C., Delcourt, I., Rance, M., Giraudet, C., Walrand, S., Bedu, M., Duche, P., & Boirie, Y. (2009). Changes in basal and insulin and amino acid response of whole body and skeletal muscle proteins in obese men. Journal of Clinical Endocrinology and Metabolism, 94(8), 3044–3050. https://doi.org/10.1210/jc.2008-2216
Hales, C. M., Carroll, M. D., Fryar, C. D., & Ogden, C. L. (2020). Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017-2018. NCHS data brief, 360, 1–8. https://www.cdc.gov/nchs/products/index.htm.
Heyward, V. (2001). ASEP methods recommendation: Body composition assessment. Journal of Exercise Physiology Online, 4(4), 1–12.
Honda, H., Qureshi, A. R., Axelsson, J., Heimburger, O., Suliman, M. E., Barany, P., Stenvinkel, P., & Lindholm, B. (2007). Obese sarcopenia in patients with end-stage renal disease is associated with inflammation and increased mortality. American Journal of Clinical Nutrition, 86(3), 633–638. https://doi.org/10.1093/ajcn/86.3.633
Kalyani, R. R., Metter, E. J., Xue, Q.-L., Egan, J. M., Chia, C. W., Studenski, S., Shaffer, N. C., Golden, S., Al-Sofiani, M., Florez, H., & Ferrucci, L. (2020). The Relationship of Lean Body Mass With Aging to the Development of Diabetes. Journal of the Endocrine Society, 4(7). https://doi.org/10.1210/jendso/bvaa043
Kivimäki, M., Kuosma, E., Ferrie, J. E., Luukkonen, R., Nyberg, S. T., Alfredsson, L., Batty, G. D., Brunner, E. J., Fransson, E., Goldberg, M., Knutsson, A., Koskenvuo, M., Nordin, M., Oksanen, T., Pentti, J., Rugulies, R., Shipley, M. J., Singh-Manoux, A., Steptoe, A., … Jokela, M. (2017). Overweight, obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe. The Lancet Public Health, 2(6), e277–e285. https://doi.org/10.1016/S2468-2667(17)30074-9
Lee, D. H., Keum, N. N., Hu, F. B., Orav, E. J., Rimm, E. B., Willett, W. C., & Giovannucci, E. L. (2018). Predicted lean body mass, fat mass, and all cause and cause specific mortality in men: prospective US cohort study. BMJ (Clinical research ed.), 362, k2575. https://doi.org/10.1136/bmj.k2575
Medina-Inojosa, J. R., Somers, V. K., Thomas, R. J., Jean, N., Jenkins, S. M., Gomez-Ibarra, M. A., Supervia, M., & Lopez-Jimenez, F. (2018). Association between adiposity and lean mass with long-term cardiovascular events in patients with coronary artery disease: No paradox. Journal of the American Heart Association, 7(10). https://doi.org/10.1161/JAHA.117.007505
Merli, M., Lattanzi, B., & Aprile, F. (2019). Sarcopenic obesity in fatty liver. Current Opinion in Clinical Nutrition & Metabolic Care, 22(3), 185–190. https://doi.org/10.1097/MCO.0000000000000558
Montano-Loza, A. J., Angulo, P., Meza-Junco, J., Prado, C. M. M., Sawyer, M. B., Beaumont, C., Esfandiari, N., Ma, M., & Baracos, V. E. (2016). Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. Journal of Cachexia, Sarcopenia and Muscle, 7(2), 126–135. https://doi.org/10.1002/jcsm.12039
Moon, S., Oh, C. M., Choi, M. K., Park, Y. K., Chun, S., Choi, M., Yu, J. M., & Yoo, H. J. (2017). The influence of physical activity on risk of cardiovascular disease in people who are obese but metabolically healthy. PLoS ONE, 12(9). https://doi.org/10.1371/journal.pone.0185127
Murton, A. J., Marimuthu, K., Mallinson, J. E., Selby, A. L., Smith, K., Rennie, M. J., & Greenhaff, P. L. (2015). Obesity appears to be associated with altered muscle protein synthetic and breakdown responses to increased nutrient delivery in older men, but not reduced muscle mass or contractile function. Diabetes, 64(9), 3160–3171. https://doi.org/10.2337/db15-0021
Newman, A. B., Kupelian, V., Visser, M., Simonsick, E. M., Goodpaster, B. H., Kritchevsky, S. B., Tylavsky, F. A., Rubin, S. M., & Harris, T. B. (2006). Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 61(1), 72–77. https://doi.org/10.1093/gerona/61.1.72
Padwal, R., Leslie, W. D., Lix, L. M., & Majumdar, S. R. (2016). Relationship among body fat percentage, body mass index, and all-cause mortality: A Cohort Study. Annals of Internal Medicine, 164(8), 532–541. https://doi.org/10.7326/M15-1181
Poggiogalle, E., Mendes, I., Ong, B., Prado, C. M., Mocciaro, G., Mazidi, M., Lubrano, C., Lenzi, A., Donini, L. M., & Siervo, M. (2020). Sarcopenic obesity and insulin resistance: Application of novel body composition models. Nutrition, 75–76. https://doi.org/10.1016/j.nut.2020.110765
Polyzos, S. A., & Margioris, A. N. (2018). Sarcopenic obesity. Hormones, 17(3), 321–331. https://doi.org/10.1007/s42000-018-0049-x
Rolland, Y., Gallini, A., Cristini, C., Schott, A. M., Blain, H., Beauchet, O., Cesari, M., & Lauwers-Cances, V. (2014). Body-composition predictors of mortality in women aged ≥75 y: Data from a large population-based cohort study with a 17-y follow-up. American Journal of Clinical Nutrition, 100(5), 1352–1360. https://doi.org/10.3945/ajcn.114.086728
Romero-Corral, A., Somers, V. K., Sierra-Johnson, J., Thomas, R. J., Collazo-Clavell, M. L., Korinek, J., Allison, T. G., Batsis, J. A., Sert-Kuniyoshi, F. H., & Lopez-Jimenez, F. (2008). Accuracy of body mass index in diagnosing obesity in the adult general population. International Journal of Obesity, 32(6), 959–966. https://doi.org/10.1038/ijo.2008.11
Rooy, M.-J., & Pretorius, E. (2014). Obesity, Hypertension and Hypercholesterolemia as Risk Factors for Atherosclerosis Leading to Ischemic Events. Current Medicinal Chemistry, 21(19), 2121–2129. https://doi.org/10.2174/0929867321666131227162950
Shah, M., Hurt, R. T., & Mundi, M. S. (2017). Phenotypes of Obesity: How it Impacts Management. Current Gastroenterology Reports, 19(11), 55. https://doi.org/10.1007/s11894-017-0598-1
Smeuninx, B., Mckendry, J., Wilson, D., Martin, U., & Breen, L. (2017). Age-Related Anabolic Resistance of Myofibrillar Protein Synthesis Is Exacerbated in Obese Inactive Individuals. The Journal of Clinical Endocrinology & Metabolism, 102(9), 3535–3545. https://doi.org/10.1210/jc.2017-00869
Srikanthan, P., & Horwich, T. B. (2012). The Obesity Paradox: Time for a New Look at an Old Paradigm. Revista Española de Cardiología (English Edition), 65(5), 403–404. https://doi.org/10.1016/j.rec.2011.12.012
Srikanthan, P., Horwich, T. B., & Tseng, C. H. (2016). Relation of Muscle Mass and Fat Mass to Cardiovascular Disease Mortality. American Journal of Cardiology, 117(8), 1355–1360. https://doi.org/10.1016/j.amjcard.2016.01.033
Sternfeld, B., Ngo, L., Satariano, W. A., & Tager, I. B. (2002). Associations of body composition with physical performance and self-reported functional limitation in elderly men and women. American Journal of Epidemiology, 156(2), 110–121. https://doi.org/10.1093/aje/kwf023
Thomson, J., Nelson, J., & Silverman, S. (2005). Research methods in physical activity. In H. Kinetics (Org.), Journal of sports sciences (Vol. 35, Número 5).
Toss, F., Wiklund, P., Nordström, P., & Nordström, A. (2012). Body composition and mortality risk in later life. Age and Ageing, 41(5), 677–681. https://doi.org/10.1093/ageing/afs087
Vanavanan, S., Srisawasdi, P., Rochanawutanon, M., Kumproa, N., Kruthkul, K., & Kroll, M. H. (2018). Performance of body mass index and percentage of body fat in predicting cardiometabolic risk factors in thai adults. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 11, 241–253. https://doi.org/10.2147/DMSO.S167294
Vanitallie, T. B., Yang, M. U., Heymsfield, S. B., Funk, R. C., & Boileau, R. A. (1990). Height-normalized indices of the body’s fat-free mass and fat mass: Potentially useful indicators of nutritional status. American Journal of Clinical Nutrition, 52(6), 953–959. https://doi.org/10.1093/ajcn/52.6.953
Wannamethee, S. G., & Atkins, J. L. (2015). Muscle loss and obesity: The health implications of sarcopenia and sarcopenic obesity. Proceedings of the Nutrition Society, 74(4), 405–412. https://doi.org/10.1017/S002966511500169X
WHO, W. H. O. (2015). Obesity and overweight. World Health Organization. http://www.who.int/ Q4 mediacentre/factsheets/fs311/en/
World Obesity. (2020). Obesity: missing the 2025 global targets. World Obesity Federation, 12–32. https://data.worldobesity.org/publications/?cat=2
Zalesin, K. C., Franklin, B. A., Lillystone, M. A., Shamoun, T., Krause, K. R., Chengelis, D. L., Mucci, S. J., Shaheen, K. W., & McCullough, P. A. (2010). Differential loss of fat and lean mass in the morbidly obese after bariatric surgery. Metabolic Syndrome and Related Disorders, 8(1), 15–20. https://doi.org/10.1089/met.2009.0012
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Heloá Costa Borim Christinelli; Greice Westphal; Nelson Nardo Junior; Maria Luiza Costa Borim ; Maria Antonia Ramos Costa; Carlos Alexandre Molena Fernandes
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.