Efeito da co-inoculação de bactérias promotoras de crescimento na cultura da soja
DOI:
https://doi.org/10.33448/rsd-v9i12.11360Palavras-chave:
A. brasilense; Bacillus; Bactérias promotoras do crescimento de plantas; Co-inoculação; Inoculação; Nitrogênio; Soja.Resumo
A cultura da soja, apresenta com frequência limitações de produtividade, muitas das quais são oriundas de problemas nutricionais, sobretudo pelo fornecimento insuficiente de N. Umas das maneiras para sobrepujar esse problema é por meio de co-inoculação com bactérias promotoras do crescimento de plantas (BPCP), de modo a potencializar a FBN e facilitar a aquisição de N e de outros nutrientes no solo. Assim, o objetivo deste estudo foi avaliar o efeito da co-inoculação, entre B. japonicum e BPCP’s, na produtividade, na nodulação e nos componentes de rendimento da cultura da soja. Foram realizados quatro experimentos na safra 2017/18, os ensaios foram realizados em DBC no esquema fatorial 4 x 12, sendo: quatro (4) locais (Guarapuava/PR, Lapa/PR, Santa Maria do Oeste/PR e Sertão/RS) e 12 tratamentos (uso de BPCP’s associadas com a inoculação padrão). Foi avaliada a produtividade, a nodulação e os componentes de rendimento da cultura da soja. Os resultados obtidos, ainda que positivos na sua maioria, foram variáveis em função de cada local, a variabilidade dos resultados pode ser diminuída por meio do uso de consórcios bacterianos. As BPCP’s proporcionaram incrementos na massa e no número de nódulos, massa de mil grãos, número de grãos por planta, e essas características estão diretamente relacionadas com a produtividade da cultura. Foi observado que as BPCP’s, em co-inoculação com o B. japonicum, sobretudo do gênero Bacillus, propiciaram incrementos de produtividade na cultura da soja, logo se mostraram como importante alternativa para serem utilizadas em co-inoculação com B. japonicum na cultura da soja.
Referências
Armendariz, A. L., Talano, M. A., Olmos Nicotra, M. F., Escudero, L., Breser, M. L., Porporatto, C., & Agostini, E. (2019). Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant Physiology and Biochemistry, 138, 26-35.
Arruda, L., Beneduzi, A., Martins, A., Lisboa, B., Lopes, C., Bertolo, F., . . . Vargas, L. K. (2013). Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant growth. Applied Soil Ecology, 63, 15-22.
Bárbaro, I. M., Centurion, M. A. P. C., Gavioli, E. A., Sarti, D. G. P., Bárbaro Júnior, L. S., Ticelli, M., & Miguel, F. B. (2009). Análise de cultivares de soja em resposta a inoculação e aplicação de cobalto e molibdênio. Revista Ceres, 56(3), 342-349.
Bomfim, P. R. C. M., Almeida, J. S., Gouveia, V. A. L., Macedo, M. A. S., & Marques, J. A. V. C. (2011). Utilização de análise multivariada na avaliação do desempenho economico-financeiro de curto prazo_uma aplicação no setor de distribuição de energia elétrica. Revista ADM.MADE, 15(1), 75-92.
Cerezini, P., Kuwano, B. H., dos Santos, M. B., Terassi, F., Hungria, M., & Nogueira, M. A. (2016). Strategies to promote early nodulation in soybean under drought. Field Crops Research, 196, 160-167.
Chibeba, A. M., Guimarães, M. d. F., Brito, O. R., Nogueira, M. A., Araujo, R. S., & Hungria, M. (2015). Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. American Journal of Plant Sciences, 06(10), 1641-1649.
Cochran, W. G. (1947). The distribution of the largest of a set of estimated variances as a fraction of their total. Annals of Eugenics, 22(11), 47-52.
Córdova, S. C., Castellano, M. J., Dietzel, R., Licht, M. A., Togliatti, K., Martinez-Feria, R., & Archontoulis, S. V. (2019). Soybean nitrogen fixation dynamics in Iowa, USA. Field Crops Research, 236, 165-176.
Dhami, N., & Prasad, B. N. (2009). Increase in root nodulation and crop yield of soybean by native Bradyrhizobium japonicum strains. Journal of Plant Science, 6, 1-3.
Dodd, I. C., Zinovkina, N. Y., Safronova, V. I., & Belimov, A. A. (2010). Rhizobacterial mediation of plant hormone status. Annals of Applied Biology, 157(3), 361-379.
Etesami, H., & Alikhani, H. A. (2016). Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant. Rhizosphere, 2, 5-12.
Fehr, W. R., & Caviness, C. E. (1977). Stages of soybean development. Special Report. 87.
Fukami, J., de la Osa, C., Ollero, F. J., Megías, M., & Hungria, M. (2018). Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Functional Plant Biology, 45(3), 328.
Gagné-Bourque, F., Mayer, B. F., Charron, J. B., Vali, H., Bertrand, A., & Jabaji, S. (2015). Accelerated growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. Plos One, 10(6), 1-23.
Galindo, F. S., Teixeira Filho, M. C. M., Buzetti, S., Ludkiewicz, M. G. Z., Rosa, P. A. L., & Tritapepe, C. A. (2018). Technical and economic viability of co-inoculation with Azospirillum brasilense in soybean cultivars in the Cerrado. Revista Brasileira De Engenharia Agricola E Ambiental, 22(1), 51-56.
Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo), 2012, 1 - 15.
Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30-39.
Gonçalves, L. C., De Andrade, A. P. C., Ribeiro, G. P., & Seibel, N. F. (2014). Composição química e propriedades tecnológicas de duas cultivares de soja. BBR - Biochemistry and Biotechnology Reports, 3(1), 33.
Gonçalves, M. R., Pereira, L. C., Jadoski, C. J., Guilherme, D., & Alves, R. T. B. (2018). Composição químicobromatológica de diferentes subprodutos da soja. Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias, 11(1).
Hungria, M., & Mendes, I. C. (2015). Nitrogen fixation with soybean: biological nitrogen fixation? In F. Bruijn (Ed.), Biological nitrogen fixation (pp. 1009-1024). New Jersey: John Wiley & Sons.
Hungria, M., Nogueira, M. A., & Araujo, R. S. (2015). Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: A new biotechnological tool to improve yield and sustainability. American Journal of Plant Sciences, 06(06), 811-817.
Juge, C., Prévost, D., Bertrand, A., Bipfubusa, M., & Chalifour, F. P. (2012). Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae. Applied Soil Ecology, 61, 147-157.
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187-200.
Kaschuk, G., Nogueira, M. A., Luca, M. J., & Hungria, M. (2016). Response of determinate and indeterminate soybean cultivars to basal and topdressing N fertilization compared to sole inoculation with Bradyrhizobium. Field Crops Research, 195, 21-27.
Kolmogorov, A. (1941). Confidence limits for an unknown distribution function. Annals of Mathematical Statistics, 12, 461-463.
Lim, J. H., & Kim, S. D. (2013). Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathology Journal, 29(2), 201-208.
Liu, Y., Wu, L., Baddeley, J. A., & Watson, C. A. (2011). Models of biological nitrogen fixation of legumes. A review. Agronomy for Sustainable Development, 31(1), 155-172.
Lodhi, K. K., Choubey, N. K., Dwivedi, S. K., Pal, A., & Kanwar, P. C. (2015). Impact of seaweed saps on growth, flowering behavior and yield of soybean [Glycine max (L.) Merrill.]. The Bioscan, 10(1), 479-483.
Marinković, J., Bjelić, D., Tintor, B., Miladinović, V., Đukić, V., & Đorđević, V. (2018). Effects of soybean co-inoculation with plant growth promoting rhizobacteria in field trial. Romanian Biotechnological Letters, 23(2), 13401-13408.
Masciarelli, O., Llanes, A., & Luna, V. (2014). A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiology Research, 169(7-8), 609-615.
Matoso, S. C. G., & Kusdra, J. F. (2014). Nodulação e crescimento do feijoeiro em resposta à aplicação de molibdênio e inoculante rizobiano. Revista Brasileira De Engenharia Agricola E Ambiental, 18(6), 567-573.
McCoy, J. M., Kaur, G., Golden, B. R., Orlowski, J. M., Cook, D. R., Bond, J. A., & Cox, M. S. (2018). Nitrogen fertilization of soybean affects root growth and nodulation on two soil types in Mississippi. Communications in Soil Science and Plant Analysis, 49(2), 181-187.
Mendes, I. C., Vargas, M. A. T., & Hungria, M. (2000). Estabelecimento de Estirpes de Bradyrhizobium japonicum/B. elkanii e seus efeitos na reinoculação da soja em solos de cerrado. Documentos, 20 (pp. 18 p.). Planaltina: Embrapa Cerrados.
Mundstock, C. M., & Thomas, A. L. (2005). Soja: Fatores que afetam o crescimento e o rendimento de grãos. Porto Alegre: Departamento de Plantas de Lavoura da Universidade Federal do Rio Grande do Sul : Evangraf.
Mustafa, S., Kabir, S., Shabbir, U., & Batool, R. (2019). Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis, 78(2), 115-123.
Narayanan, S., & Fallen, B. (2019). Evaluation of Soybean Plant Introductions for Traits that can Improve Emergence under Varied Soil Moisture Levels. Agronomy, 9(3), 118.
Neisse, A. C., & Hongyu, K. (2016). Aplicação de componentes principais e análise fatorial a dados criminais de 26 estados dos EUA. Engineering and Science, 5(2), 105-115.
Novinscak, A., Joly, D. L., & Filion, M. (2019). Complete Genome Sequence of the Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens LBUM677. Microbiol Resources Announcements, 8(25), 1-2.
Peiretti, P., Karamać, M., Janiak, M., Longato, E., Meineri, G., Amarowicz, R., & Gai, F. (2019). Phenolic Composition and Antioxidant Activities of Soybean (Glycine max (L.) Merr.) Plant during Growth Cycle. Agronomy, 9(3), 153.
Pérez-Montaño, F., Alias-Villegas, C., Bellogin, R. A., del Cerro, P., Espuny, M. R., Jimenez-Guerrero, I., . . . Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res, 169(5-6), 325-336.
Pimentel, I. C., Glienke-Blanco, C., Gabardo, J., Stuart, R. M., & Azevedo, J. L. (2006). Identification and colonization of endophytic fungi from soybean (Glycine max (L.) Merril) under different environmental conditions. Brazilian Archives of Biology and Technology, 49(5), 705-711.
Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. Journal of Statistical Modeling and Analytics, 2(1), 21-33.
Rego, C. H. Q., Cardoso, F. B., Cândido, A. C. d. S., Teodoro, P. E., & Alves, C. Z. (2018). Co-inoculation with Bradyrhizobium and Azospirillum increases yield and quality of soybean seeds. Agronomy Journal, 110(6), 2302.
Rotaru, V. (2015). Responses of acid phosphatase activity on the root surface and rhizospheric soil of soybean plants to phosphorus fertilization and rhizobacteria. Scientific Papers. Series A. Agronomy, LVIII, 295-300.
Saikia, S. P., Dutta, S. P., Goswami, A., Bhau, B. S., & Kanjilal, P. B. (2010). Role of Azospirillum in the improvement of legumes. In M. S. Khan, A. Zaidi & J. Musarrat (Eds.), Microbes for legume improvement (pp. 389-408). Springer-Verlag, Wien.
Saito, A., Tanabata, S., Tanabata, T., Tajima, S., Ueno, M., Ishikawa, S., . . . Ohyama, T. (2014). Effect of nitrate on nodule and root growth of soybean (Glycine max (L.) Merr.). Int J Mol Sci, 15(3), 4464-4480.
Salvagiotti, F., Cassman, K. G., Specht, J. E., Walters, D. T., Weiss, A., & Dobermann, A. (2008). Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research, 108(1), 1-13.
Salvagiotti, F., Specht, J. E., Cassman, K. G., Walters, D. T., Weiss, A., & Dobermann, A. (2009). Growth and nitrogen fixation in high-yielding soybean: Impact of nitrogen fertilization. Agronomy Journal, 101(4), 958.
Sandini, I. E., Belani, R. B., Falbo, M. K., Pacentchuk, F., & Huzar-Novakowiski, J. (2019). Seed treatment and pre-inoculation of soybean: effect of storage period and agrochemicals on the physiological quality of seed and yield. African Journal of Agricultural Research, 14(3), 151-160.
Santachiara, G., Borrás, L., Salvagiotti, F., Gerde, J. A., & Rotundo, J. L. (2017). Relative importance of biological nitrogen fixation and mineral uptake in high yielding soybean cultivars. Plant and Soil, 418(1-2), 191-203.
Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda Mdel, C., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiol Res, 183, 92-99.
Shabanamol, S., Divya, K., George, T. K., Rishad, K. S., Sreekumar, T. S., & Jisha, M. S. (2018). Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa). Physiol Mol Plant Pathol., 102, 46-54.
Shen, Y., Sui, P., Huang, J., Wang, D., Whalen, J. K., & Chen, Y. (2018). Global warming potential from maize and maize-soybean as affected by nitrogen fertilizer and cropping practices in the North China Plain. Field Crops Research, 225, 117-127.
Silva, F. C. (2009). Manual de análises químicas de solos, plantas e fertilizantes. - 2. ed. rev. ampl. - Brasília, DF: Embrapa Informação Tecnológica.
Smirnov, N. V. (1948). Table for stimating the goodness of fit empirical distributions. Annals of Mathematical Statistics, 19(279-281).
Spolaor, L. T., Gonçalves, L. S. A., Santos, O. J. A. P. d., Oliveira, A. L. M. d., Scapim, C. A., Bertagna, F. A. B., & Kuki, M. C. (2016). Plant growth-promoting bacteria associated with nitrogen fertilization at topdressing in popcorn agronomic performance. Bragantia, 75(1), 33-40.
Steiner, F., Ferreira, H. C. P., & Zuffo, A. M. (2019). Can co-inoculation of Rhizobium tropici and Azospirillum brasilense increase common bean nodulation and grain yield? Semina: Ciências agrárias, 40(1), 81.
Szilagyi-Zecchin, V. J., Marriel, I. E., & Silva, P. R. F. (2017). Produtividade de milho inoculado com Azospirillum brasilense em diferentes doses de nitrogênio cultivado em campo no Brasil. Revista de Ciências Agrárias, 40(4), 795-798.
Zafar, M., Abbasi, M. K., Khan, M. A., Khaliq, A., Sultan, T., & Aslam, M. (2012). Effect of plant growth-promoting rhizobacteria on growth, nodulation and nutrient accumulation of lentil under controlled conditions. Pedosphere, 22(6), 848-859.
Zuffo, A. M., Steiner, F., Busch, A., & Zoz, T. (2018). Response of early soybean cultivars to nitrogen fertilization associated with Bradyrhizobium japonicum inoculation. Pesquisa Agropecuária Tropical, 48(4), 436-446.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Fabiano Pacentchuk; Juliana Marcolino Gomes ; Vanderlei Aparecido de Lima; Marcelo Cruz Mendes; Itacir Eloi Sandini; Sidnei Osmar Jadoski
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.