Caracterização fitoquímica e tecnológica da polpa desidratada de canistel: um novo potencial ingrediente alimentar

Autores

DOI:

https://doi.org/10.33448/rsd-v10i1.11577

Palavras-chave:

Pouteria campechiana (Kunth) Baehni; Compostos bioativos; Carotenoides; Propriedades higroscópicas.

Resumo

Canistel (Pouteria campechiana (Kunth) Baehni) é uma fruta tropical de polpa amarela devido à presença de carotenoides, que pode ser de interesse para aplicação na indústria alimentícia. O objetivo desta pesquisa foi analisar as características fitoquímicas e tecnológicas da polpa de canistel desidratada por técnicas de desidratação térmica e liofilização. Os ensaios de atividades antioxidantes (radical DPPH e ABTS; atividade antioxidante pelo poder de redução do ferro - FRAP), teor de polifenóis totais flavonoides e carotenoides (Espectroscopia UV-Vis, FTIR e Raman), cor e propriedades higroscópicas foram realizados. A amostra liofilizada apresentou maior concentração de carotenoides, coloração mais intensa e melhores propriedades de hidratação que a amostra desidratada termicamente. Grupos funcionais pertencentes a água, carotenoides, amidas primárias e secundárias, grupos aldeídos, ácidos fenólicos, anéis aromáticos, celulose, polissacarídeos e niacina foram identificados por FTIR em ambas as amostras. O ingrediente obtido por liofilização apresentou melhores características tecnológicas, permitindo seu uso pela indústria alimentícia.

Referências

Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2(4), 875–877. https://doi.org/10.1038/nprot.2007.102

Almeida, R. L., Santos, N. C., Pereira, T. dos S., Silva, V. M. de alcântara, Cabral, M. B., Barros, E. R., … Silva, L. R. I. da. (2020). Determinação de compostos bioativos e composição físico-química da farinha da casca de jabuticaba obtida por secagem convectiva e liofilização. Research, Society and Development, 9(1), e157911876. https://doi.org/10.33448/rsd-v9i1.1876

Anderson, R. A., Conway, H. F., & Peplinski, A. J. (1970). Gelatinization of Corn Grits by Roll Cooking, Extrusion Cooking and Steaming. Starch ‐ Stärke, 22(4), 130–135. https://doi.org/10.1002/star.19700220408

Aseervatham, G. S. B., Sivasudha, T., Sasikumar, J. M., Christabel, P. H., Jeyadevi, R., & Ananth, D. A. (2014). Antioxidant and hepatoprotective potential of Pouteria campechiana on acetaminophen-induced hepatic toxicity in rats. Journal of Physiology and Biochemistry, 70(1), 1–14. https://doi.org/10.1007/s13105-013-0274-3

Ayala-Zavala, J. F., Vega-Vega, V., Rosas-Domínguez, C., Palafox-Carlos, H., Villa-Rodriguez, J. A., Siddiqui, M. W., Dávila-Aviña, J. E., & González-Aguilar, G. A. (2011). Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Research International, 44(7), 1866–1874. https://doi.org/10.1016/j.foodres.2011.02.021

Baranska, M., Schütze, W., & Schulz, H. (2006). Determination of lycopene and β-carotene content in tomato fruits and related products: Comparison of FT-raman, ATR-IR, and NIR spectroscopy. Analytical Chemistry, 78(24), 8456–8461. https://doi.org/10.1021/ac061220j

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

Buriol, L., Finger, D., Schmidt, E. M., Dos Santos, J. M. T., Da Rosa, M. R., Quináia, S. P., Torres, Y. R., Santa, H. S. D., Pessoa, C., De Moraes, M. O., Costa-Lotufo, L. V., Ferreira, P. M. P., Frankland Sawaya, A. C. H., & Eberlin, M. N. (2009). Composição química e atividade biológica de extrato oleoso de própolis: Uma alternativa ao extrato etanólico. Quimica Nova, 32(2), 296–302. https://doi.org/10.1590/S0100-40422009000200006

Cadden, A. (1987). Comparative Effects of Particle Size Reduction on Physical Structure and Water Binding Properties of Several Plant Fibers. Journal of Food Science, 52(6), 1595–1599. https://doi.org/10.1111/j.1365-2621.1987.tb05886.x

Colonna, P., Doublier, J. L., Melcion, J. P., Monredon, F., & Mercier, C. (1984). Extrusion Cooking and Drum Drying of Wheat Starch. I. Physical and Macromolecular Modifications. In Cereal Chemistry (Vol. 61, Issue 6, pp. 538–543).

Darvin, M. E., Gersonde, I., Albrecht, H., Meinke, M., Sterry, W., & Lademann, J. (2006). Non-invasive in vivo detection of the carotenoid antioxidant substance lycopene in the human skin using the resonance Raman spectroscopy. Laser Physics Letters, 3(9), 460–463. https://doi.org/10.1002/lapl.200610032

de Lanerolle, M. S., Buddhika Priyadarshani, A. M., Sumithraarachchi, D. B., & Jansz, E. R. (2008). The carotenoids of Pouteria campechiana (Sinhala: Ratalawulu). Journal of the National Science Foundation of Sri Lanka, 36(1), 95–98. https://doi.org/10.4038/jnsfsr.v36i1.136

El-Agamey, A., & McGarvey, D. J. (2016). Peroxyl radical reactions with carotenoids in microemulsions: Influence of microemulsion composition and the nature of peroxyl radical precursor. Free Radical Biology and Medicine, 90, 75–84. https://doi.org/10.1016/j.freeradbiomed.2015.10.427

Guillon, F., & Champ, M. (2000). Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Research International, 33(3–4), 233–245. https://doi.org/10.1016/S0963-9969(00)00038-7

Gülçin, I. (2010). Antioxidant properties of resveratrol: A structure-activity insight. Innovative Food Science and Emerging Technologies, 11(1), 210–218. https://doi.org/10.1016/j.ifset.2009.07.002

Heredia-Guerrero, J. A., Benítez, J. J., Domínguez, E., Bayer, I. S., Cingolani, R., Athanassiou, A., & Heredia, A. (2014). Infrared and Raman spectroscopic features of plant cuticles: a review. Frontiers in Plant Science, 5. https://doi.org/10.3389/fpls.2014.00305

Iqbal, M., Saeed, A., & Zafar, S. I. (2009). FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. Journal of Hazardous Materials, 164(1), 161–171. https://doi.org/10.1016/j.jhazmat.2008.07.141

Kalt, W. (2005). Effects of Production and Processing Factors on Major Fruit and Vegetable Antioxidants. Journal of Food Science, 70(1), R11–R19. https://doi.org/10.1111/j.1365-2621.2005.tb09053.x

Kaur, M., & Singh, N. (2005). Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 91(3), 403–411. https://doi.org/10.1016/j.foodchem.2004.06.015

Kong, K. W., Khoo, H. E., Prasad, N. K., Chew, L. Y., & Amin, I. (2013). Total phenolics and antioxidant activities of Pouteria campechiana fruit parts. Sains Malaysiana, 42(2), 123–127.

Lin, M. J. Y., Humbert, E. S., & Sosulski, F. W. (1974). Certain functional properties of sunflower meal products. Journal of Food Science, 39(2), 368–370. https://doi.org/10.1111/j.1365-2621.1974.tb02896.x

Ma, J., Yang, H., Basile, M. J., & Kennelly, E. J. (2004). Analysis of polyphenolic antioxidants from the fruits of three Pouteria species by selected ion monitoring liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 52(19), 5873–5878. https://doi.org/10.1021/jf049950k

Mothé, C. G., & De Miranda, I. C. (2009). Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. Journal of Thermal Analysis and Calorimetry, 97(2), 661–665. https://doi.org/10.1007/s10973-009-0346-3

Murillo, E., Meléndez-Martínez, A. J., & Portugal, F. (2010). Screening of vegetables and fruits from Panama for rich sources of lutein and zeaxanthin. Food Chemistry, 122(1), 167–172. https://doi.org/10.1016/j.foodchem.2010.02.034

Olsson, A. M., & Salmén, L. (2004). The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydrate Research, 339(4), 813–818. https://doi.org/10.1016/j.carres.2004.01.005

Posé, S., Kirby, A. R., Mercado, J. A., Morris, V. J., & Quesada, M. A. (2012). Structural characterization of cell wall pectin fractions in ripe strawberry fruits using AFM. Carbohydrate Polymers, 88(3), 882–890. https://doi.org/10.1016/j.carbpol.2012.01.029

Pushpakumara, D. K. N. G. (2007). Lavulu Pouteria campechiana Kunth Baehni. In D. K. N. G. Pushpakumara, H. P. M. Gunasena, & V. P. Singh (Eds.), Underutilized fruit trees in Sri Lanka (pp. 426–436). World Agroforestry Centre.

Rodrigues-Amaya, D. B., Kimura, M., & Amaya-Farfan, J. (2008). Fontes brasileiras de carotenóides: tabela brasileira de composição de carotenóides em alimentos (L. Coradin & V. B. Pombo (eds.)). MMA/SBF.

Rodriguez-Amaya, D., & Kimura, M. (2004). HarvestPlus Handbook for Carotenoid Analysis. HarvestPlus Technical Monographs, 59.

Rufino, S. M., Alves, R. E., Brito, E. S. De, Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037

Schwartz, S. J., von Elbee, J. H., & Monica Giusti, M. (2007). Colorants. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Fennema’s food chemistry (4°, pp. 445–498). CRC Press.

Singleton, V. L., Rossi Jr., J. A., & Rossi J A Jr. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144–158. https://doi.org/10.12691/ijebb-2-1-5

Stehfest, K., Toepel, J., & Wilhelm, C. (2005). The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiology and Biochemistry, 43(7), 717–726. https://doi.org/10.1016/j.plaphy.2005.07.001

Stuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications. In Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons, Ltd. https://doi.org/10.1002/0470011149

Sunila, A. V, Kumar, V. S. A., Babu, K. V. D., & Murugan, K. (2016). Comparison of FTIR fingerprints in the fruits of Pouteria campechiana (Kunth) Baehni at different developmental stages. International Journal of Pure and Applied Bioscience, 4(1), 226–234.

Wojciechowski, C., Dupu, N., Ta, C. D., Huvenneb, O. J. P., & Legrandb, P. (1998). Quantitative analysis of water-soluble vitamins by ATR-FTIR spectroscopy. 63(1).

Wojdyło, A., Figiel, A., Lech, K., Nowicka, P., & Oszmiański, J. (2014). Effect of Convective and Vacuum-Microwave Drying on the Bioactive Compounds, Color, and Antioxidant Capacity of Sour Cherries. Food and Bioprocess Technology, 7(3), 829–841. https://doi.org/10.1007/s11947-013-1130-8

Zhu, Q. Y., Hackman, R. M., Ensunsa, J. L., Holt, R. R., & Keen, C. L. (2002). Antioxidative activities of oolong tea. Journal of Agricultural and Food Chemistry, 50(23), 6929–6934. https://doi.org/10.1021/jf0206163

Downloads

Publicado

06/01/2021

Como Citar

ANJO, F. A. .; SARAIVA, . B. R. .; OGAWA, C. Y. L. .; VITAL, A. C. P. .; SATO, F. .; MATUMOTO-PINTRO, P. T. Caracterização fitoquímica e tecnológica da polpa desidratada de canistel: um novo potencial ingrediente alimentar. Research, Society and Development, [S. l.], v. 10, n. 1, p. e16410111577, 2021. DOI: 10.33448/rsd-v10i1.11577. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11577. Acesso em: 15 jan. 2025.

Edição

Seção

Ciências Agrárias e Biológicas