Nitazoxanida: aspectos gerais, sistemas de liberação e potencial de reposicionamento da molécula
DOI:
https://doi.org/10.33448/rsd-v10i1.11766Palavras-chave:
Formulação; Antiparasitários; Farmacologia; Nitazoxanida; Tizoxanida.Resumo
A nitazoxanida (NTZ) é um fármaco empregado no tratamento de infecções virais e parasitárias devido ao seu mecanismo de ação ativar processos de morte celular. Entretanto, apresenta baixa biodisponibilidade oral, restringindo a sua utilização na terapêutica, com isso, novos sistemas de liberação são necessários para melhor absorção in vivo. O objetivo desta revisão narrativa foi abordar aspectos referentes a características físico-químicas da molécula de Nitazoxanida e seu potencial de reposicionamento. Foram realizadas buscas nas bases de dados Pubmed, Lilacs e Science Direct, selecionados artigos em inglês e português, cruzando os descritores “Nitazoxanida”, “caracterização” e “formulação” combinados entre si. Evidências científicas descrevem a NTZ como uma molécula de baixo peso molecular, melhor absorvida em pH ácido, que sofre desacetilação originando seu metabólito ativo, a Tizoxanida. Estudos relatam sua aplicação frequentemente em doenças por Giardia lamblia, Entamoeba histolytica e Cryptosporidium parvum, além de infecções por protozoários, helmintos, bactérias gram negativas e positivas e possuir propriedades antivirais, estando relacionado a sua descoberta recente na COVID-19, inclusive associada a outros fármacos. Assim, sistemas como lipossomas, nanopartículas, microesferas, comprimidos de liberação controlada foram relatados como potencializadores veículos na liberação do fármaco, além de possibilitar melhoria nos seus aspectos físico-químicos. Portanto, a NTZ representa uma molécula com grande potencial de aplicação e reposicionamento, abrangendo inúmeras possibilidades.
Referências
Abaza, H., El-Zayadi, A. R., Kabil, S. M., & Rizk, H. (1998). Nitazoxanide in the treatment of patients with intestinal protozoan and helminthic infections: a report on 546 patients in Egypt. Current Therapeutic Research, 59(2), pp. 116-121. DOI: https://doi.org/10.1016/S0011-393X(98)85006-6.
Abbasalipourkabir, R., Fallah, M., Sedighi, F., Maghsood, A. H., & Javid, S. (2016). Nanocapsulation of nitazoxanide in solid lipid nanoparticles as a new drug delivery system and in vitro release study. Journal of Biological Sciences, 16(4), pp. 120-127. DOI: https://dx.doi.org/10.3923/jbs.2016.120.127.
Ahirrao, S. P., Rathi, K. S., Koli, D. B., Kshirsagar, S. J., Pawar, S. (2018). Solubility enhancement of nitazoxanide using solid dispersion. J Pharm & Sci. v. 19 (5), 1674–1687.
Ai, N., Wood, R. D., & Welsh, W. J. (2015). Identification of nitazoxanide as a group I metabotropic glutamate receptor negative modulator for the treatment of neuropathic pain: an in silico drug repositioning study. Pharmaceutical research, 32(8), pp. 2798-2807. DOI: https://doi.org/10.1007/s11095-015-1665-7.
Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: from concept to clinical applications. Advanced drug delivery reviews, 65(1), pp. 36-48. DOI: https://doi.org/10.1016/j.addr.2012.09.037.
Belardo, G., Cenciarelli, O., La Frazia, S., Rossignol, J. F., & Santoro, M. G. (2015). Synergistic effect of nitazoxanide with neuraminidase inhibitors against influenza A viruses in vitro. Antimicrobial agents and chemotherapy, 59(2), pp. 1061-1069. DOI: https://doi.org/10.1128/aac.03947-14.
Bolla, G., & Nangia, A. (2016). Pharmaceutical cocrystals: walking the talk. Chemical communications, 52(54), pp. 8342-8360. DOI: https://doi.org/10.1039/C6CC02943D.
Botta, L., Rivara, M., Zuliani, V., & Radi, M. (2018). Drug repurposing approaches to fight Dengue virus infection and related diseases. Front Biosci, 23, pp. 997-1019. DOI: https://doi.org/10.2741/4630.
Broekhuysen, J., Stockis, A., Lins, R. L., De Graeve, J., & Rossignol, J. F. (2000). Nitazoxanide: pharmacokinetics and metabolism in man. International journal of clinical pharmacology and therapeutics, 38(8), pp. 387-394. DOI: https://doi.org/10.5414/cpp38387.
Chan, J. F. W., Yuan, S., Kok, K. H., To, K. K. W., Chu, H., Yang, J., ... & Tsoi, H. W. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet, 395(10223), pp. 514-523. DOI: https://doi.org/10.1016/S0140-6736(20)30154-9.
Darwish, W. M., Bayoumi, N. A., & El-Kolaly, M. T. (2018). Laser-responsive liposome for selective tumor targeting of nitazoxanide nanoparticles. European Journal of Pharmaceutical Sciences, 111, pp. 526-533. DOI: https://doi.org/10.1016/j.ejps.2017.10.038.
De Carvalho, L. P. S., Lin, G., Jiang, X., & Nathan, C. (2009). Nitazoxanide kills replicating and nonreplicating Mycobacterium tuberculosis and evades resistance. Journal of medicinal chemistry, 52(19), pp. 5789-5792. DOI: https://doi.org/10.1021/jm9010719.
De las Heras Alarcón, C., Pennadam, S., & Alexander, C. (2005). Stimuli responsive polymers for biomedical applications. Chemical Society Reviews, 34(3), pp. 276-285. DOI: https://doi.org/10.1039/B406727D.
Dhawan, A. K., Bisherwal, K., Gandhi, V., Singal, A., & Sharma, S. (2015). Successful treatment of cutaneous leishmaniasis with nitazoxanide. Indian Journal of Dermatology, Venereology, and Leprology, 81(6), p. 644. DOI: https://doi.org/10.4103/0378-6323.165541.
Duggirala, N. K., Perry, M. L., Almarsson, Ö., & Zaworotko, M. J. (2016). Pharmaceutical cocrystals: along the path to improved medicines. Chemical communications, 52(4), pp. 640-655. DOI: https://doi.org/10.1039/C5CC08216A.
Elias, C. D. S. R., Silva, L. A. D., Martins, M. T. D. S. L., Ramos, N. A. P., Souza, M. D. G. G. D., & Hipólito, R. L. (2012). When is the end?: a narrative review on the termination of the school term for mentally disabled students. SMAD. Revista eletrônica saúde mental álcool e drogas, 8(1), pp. 48-53. ISSN 1806-6976. Recuperado de https://www.semanticscholar.org/paper/When-is-the-end%3A-a-narrative-review-on-the-of-the-Elias-Silva/6a66747dea75811a472933ecc25d9a99dc28c05b.
Fan-Minogue, H., Bodapati, S., Solow-Cordero, D., Fan, A., Paulmurugan, R., Massoud, T. F., ... & Gambhir, S. S. (2013). A c-Myc activation sensor-based high-throughput drug screening identifies an antineoplastic effect of nitazoxanide. Molecular cancer therapeutics, 12(9), pp. 1896-1905. DOI: https://doi.org/10.1158/1535-7163.mct-12-1243.
FarahatAllam, A., Shehab, A. Y., Mogahed, N. M. F. H., Farag, H. F., Elsayed, Y., & Abd El-Latif, N. F. (2020). Effect of nitazoxanide and spiramycin metronidazole combination in acute experimental toxoplasmosis. Heliyon, 6(4). DOI: 10.1016 / j.heliyon.2020.e03661.
Félix-Sonda, B. C., Rivera-Islas, J., Herrera-Ruiz, D., Morales-Rojas, H., & Höpfl, H. (2014). Nitazoxanide cocrystals in combination with succinic, glutaric, and 2, 5-dihydroxybenzoic acid. Crystal growth & design, 14(3), pp. 1086-1102. DOI: https://doi.org/10.1021/cg4015916.
Gilles, H. M., & Hoffman, P. S. (2002). Treatment of intestinal parasitic infections: a review of nitazoxanide. Trends in parasitology, 18(3), pp. 95-97. DOI: https://doi.org/10.1016/s1471-4922(01)02205-x.
Glisoni, R. J., & Sosnik, A. (2014). Encapsulation of the antimicrobial and immunomodulator agent nitazoxanide within polymeric micelles. Journal of Nanoscience and Nanotechnology, 14(6), pp. 4670-4682. DOI: https://doi.org/10.1166/jnn.2014.8647.
Golamaru, L. R., Rajnarayana, K., & Jayaveera, K. N. (2016). Development and in vitro-in vivo evaluation of Nitazoxanide sustained release tablets. IJPR, 6(02), p. 75. DOI: https://doi.org/10.7439/ijpr.v6i2.3017.
Guo, J., Ouyang, W., Zheng, X., Zhou, Y., Song, G., Li, H., & Shen, Q. (2013). Preparation and toxicity test of Nitazoxanide nanoemulsion. Journal of Northwest A & F University-Natural Science Edition, 41(1), pp. 19-24. ISSN: 1671-9387. Recuperado de https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201302241750458442.
Gurgen, J., Hogan, D., Grace, E., & Johnson, D. (2011). Nitazoxanide in the treatment of chronic cutaneous leishmaniasis resistant to traditional sodium stibogluconate. Journal of the American Academy of Dermatology, 64(1), pp. 202-203. DOI: https://doi.org/10.1016/j.jaad.2009.06.044.
Haffizulla, J., Hartman, A., Hoppers, M., Resnick, H., Samudrala, S., Ginocchio, C., ... & US Nitazoxanide Influenza Clinical Study Group. (2014). Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial. The Lancet Infectious diseases, 14(7), pp. 609-618. DOI: https://doi.org/10.1016/s1473-3099(14)70717-0.
Harcourt, J., Tamin, A., Lu, X., Kamili, S., Sakthivel, S. K., Murray, J., ... & Li, Y. (2020). Severe acute respiratory syndrome coronavirus 2 from patient with coronavirus disease, United States. Emerging infectious diseases, 26(6), p. 1266. DOI: https://doi.org/10.3201/eid2606.200516.
Hotez, P. J. (2014). Could nitazoxanide be added to other essential medicines for integrated neglected tropical disease control and elimination?. PLoS Negl Trop Dis, 8(3), e2758. DOI: https://doi.org/10.1371/journal.pntd.0002758.
Hong, S. K., Kim, H. J., Song, C. S., Choi, I. S., Lee, J. B., & Park, S. Y. (2012). Nitazoxanide suppresses IL-6 production in LPS-stimulated mouse macrophages and TG-injected mice. International immunopharmacology, 13(1), pp. 23-27. DOI: https://doi.org/10.1016/j.intimp.2012.03.002.
Hu, Y., Ellis, B. L., Yiu, Y. Y., Miller, M. M., Urban, J. F., Shi, L. Z., & Aroian, R. V. (2013). An extensive comparison of the effect of anthelmintic classes on diverse nematodes. PloS one, 8(7), e70702. DOI: https://doi.org/10.1371/journal.pone.0070702.
Jasenosky, L. D., Cadena, C., Mire, C. E., Borisevich, V., Haridas, V., Ranjbar, S., ... & Cassell, G. H. (2019). The FDA-approved oral drug nitazoxanide amplifies host antiviral responses and inhibits Ebola virus. iScience, 19, pp. 1279-1290. DOI: https://doi.org/10.1016/j.isci.2019.07.003.
Kelleni, M. (2020). Nitazoxanide/Azithromycin combination for COVID-19: A suggested new protocol for COVID-19 early management. Pharmacological Research, 157. DOI: https://doi.org/10.1016/j.phrs.2020.104874.
Kohla, M. A., El-Said, H., El-Fert, A., Ehsan, N., Ezzat, S., & Taha, H. (2016). Impact of nitazoxanide on sustained virologic response in Egyptian patients with chronic hepatitis C genotype 4: a double-blind placebo-controlled trial. European journal of gastroenterology & hepatology, 28(1), pp. 42-47. DOI: https://doi.org/10.1097/meg.0000000000000492.
Laura, C., Celina, E., Sergio, S. B., Guillermo, D., Carlos, L., & Luis, A. (2015). Combined flubendazole-nitazoxanide treatment of cystic echinococcosis: Pharmacokinetic and efficacy assessment in mice. Acta tropica, 148, pp. 89-96. DOI: https://doi.org/10.1016/j.actatropica.2015.04.019.
Lima, N. F., Picanço, G. A., Costa, T. L., Junior, R. D. S. L., & Vinaud, M. C. (2020). In Vivo Treatment with the Combination of Nitazoxanide and Flubendazole Induces Gluconeogenesis and Protein Catabolism in Taenia crassiceps cysticerci. Acta Parasitologica. DOI: https://doi.org/10.1007/s11686-020-00263-6.
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., ... & Bi, Y. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), pp. 565-574. DOI: https://doi.org/10.1016/s0140-6736(20)30251-8.
Mahmoud, D. B., Shitu, Z., & Mostafa, A. (2020). Drug repurposing of nitazoxanide: can it be an effective therapy for COVID-19?. Journal of Genetic Engineering and Biotechnology, 18(1), p. 35. DOI: https://doi.org/10.1186/s43141-020-00055-5.
Malesuik, M. D., Paim, C. S., Schapoval, E. E. S., & Steppe, M. (2010). Development of a simple, rapid and validated spectrophotometric method for nitazoxanide in pharmaceutical formulations and comparison with HPLC. Quím. Nova: São Paulo, 33(3), pp. 739-742. DOI: https://doi.org/10.1590/S0100-40422010000300045.
Malesuik, M. D., Gonçalves, H. M. L., Garcia, C. V., Trein, M. R., Nardi, N. B., Schapoval, E. E. S., & Steppe, M. (2012). Identification, characterization and cytotoxicity in vitro assay of nitazoxanide major degradation product. Talanta, 93, pp. 206–211. DOI: https://doi.org/10.1016/j.talanta.2012.02.014.
Matysiak‐Budnik, T., Mégraud, F., & Heyman, M. (2002). In‐vitro transfer of nitazoxanide across the intestinal epithelial barrier. Journal of pharmacy and pharmacology, 54(10), pp. 1413-1417. DOI: https://doi.org/10.1211/002235702760345518.
Mishra, R., Krishan, S., Siddiqui, A. N., Kapur, P., Khayyam, K. U., & Sharma, M. (2020). Potential role of adjuvant drugs on efficacy of first line oral antitubercular therapy: Drug repurposing. Tuberculosis, 120, 101902. DOI: https://doi.org/10.1016/j.tube.2020.101902.
Miyamoto, Y., & Eckmann, L. (2015). Drug development against the major diarrhea-causing parasites of the small intestine, Cryptosporidium and Giardia. Frontiers in microbiology, 6, 1208. DOI: https://doi.org/10.3389/fmicb.2015.01208.
Mohan, A., & Alur, A. (2019). Formulation and Evaluation of NitazoxanideSustained-Release Matrix Tablets. International Journal of Pharmaceutical and Phytopharmacological Research, 9(3), pp. 153-161. ISSN (Online) 2249-6084 (Print) 2250-1029. Recuperado de https://eijppr.com/en/article/formulation-and-evaluation-of-nitazoxanide-sustained-release-matrix-tablets.
Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature materials, 12(11), pp. 991-1003. DOI: https://doi.org/10.1038/nmat3776.
Naseri, N., Valizadeh, H., & Zakeri-Milani, P. (2015). Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Advanced pharmaceutical bulletin, 5(3), 305. DOI: https://dx.doi.org/10.15171%2Fapb.2015.043.
Noronha, D. P. & Ferreira, S. M. S. P. (2000). Revisões De Literatura. In: Campello, B. S.V. C.; Cendón, B. V.; Kremer, J. M. (Org.). Fontes De Informação Para Pesquisadores E Profissionais (p. 191). Belo Horizonte: Ufmg.
Padmanabhan, S. (2020). Potential dual therapeutic approach against SARS-CoV-2/COVID-19 with Nitazoxanide and Hydroxychloroquine. Preprint. DOI: 10.13140/RG.2.2.28124.74882.
Pal, A. K., Nandave, M., & Kaithwas, G. (2020). Chemoprophylactic activity of nitazoxanide in experimental model of mammary gland carcinoma in rats. 3 Biotech, 10(8), pp. 1-12. DOI: 10.1007/s13205-020-02332-z.
Park, C., Lee, K., & Kim, C. (2009). Photoresponsive cyclodextrin‐covered nanocontainers and their sol‐gel transition induced by molecular recognition. Angewandte Chemie, 121(7), pp. 1301-1304. DOI: https://doi.org/10.1002/anie.200803880.
Pepperrell, T., Pilkington, V., Owen, A., Wang, J., & Hill, A. M. (2020). Review of safety and minimum pricing of nitazoxanide for potential treatment of COVID-19. Journal of Virus Eradication, 6(2), p. 52. DOI: https://dx.doi.org/10.1016%2FS2055-6640(20)30017-0.
Rocco, P. R. M., Silva, P. L., Cruz, F. F., Junior, M. A. C. M., Tierno, P. F. G. M. M., Moura, M. A., ..., & Lapa E Silva, J. R. (2020). Early use of nitazoxanide in mild Covid-19 disease: randomised, placebo-controlled trial. Eur Respir J. DOI: 10.1183/13993003.03725-2020.
Rossignol, J. F., & Maisonneuve, H. (1984). Nitazoxanide in the treatment of Taenia saginata and Hymenolepis nana infections. The American journal of tropical medicine and hygiene, 33(3), pp. 511-512. DOI: https://doi.org/10.4269/ajtmh.1984.33.511.
Rossignol, J. F., & Stachulski, A. V. (1999). Syntheses and antibacterial activities of tizoxanide, an N-(nitrothiazolyl) salicylamide, and its O-aryl glucuronide. Journal of Chemical Research, 23(1), pp. 44-45. DOI: https://doi.org/10.1039/A806676K.
Rossignol, J. F., La Frazia, S., Chiappa, L., Ciucci, A., & Santoro, M. G. (2009). Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level. Journal of Biological Chemistry, 284(43), pp. 29798-29808. DOI: https://doi.org/10.1074/jbc.m109.029470.
Rossignol, J. F. (2014). Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral research, 110, pp. 94-103. DOI: https://doi.org/10.1016/j.antiviral.2014.07.014.
Rossignol, J. F. (2016). Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. Journal of infection and public health, 9(3), pp. 227-230. DOI: https://doi.org/10.1016/j.jiph.2016.04.001.
Rother, E. T. (2007). Revisão sistemática x Revisão narrativa. Acta Paulista de Enfermagem, 20(2). Recuperado de https://www.scielo.br/pdf/ape/v20n2/a01v20n2.pdf. DOI: https://doi.org/10.1590/S0103-21002007000200001
Sachan, A. K., Gupta, A., Kumari, K., & Ansari, A. (2018). Formulation And Characterization Of Microspheres Of Nitazoxanide By Chemical Crosslinking Method. Journal of Drug Delivery and Therapeutics, 8(5), pp. 190-199. DOI: 10.22270/jddt.v8i5.1850.
Sachan, A. K., & Gupta, A. (2017). Formulation and Evaluation of Bilayer Tablets of Nitazoxanide. Der pharmacialettre, 9(7), pp. 1-9. ISSN 0975-5071. Recuperado de https://www.scholarsresearchlibrary.com/articles/formulation-and-evaluation-of-bilayer-tablets-of-nitazoxanide.pdf.
Salas-Zúñiga, R., Rodríguez-Ruiz, C., Höpfl, H., Morales-Rojas, H., Sánchez-Guadarrama, O., Rodríguez-Cuamatzi, P., & Herrera-Ruiz, D. (2020). Dissolution Advantage of Nitazoxanide Cocrystals in the Presence of Cellulosic Polymers. Pharmaceutics, 12(1), p. 23. DOI: https://doi.org/10.3390/pharmaceutics12010023.
Sallum, A. M. C., Garcia, D. M., & Sanches, M. (2012). Dor aguda e crônica: revisão narrativa da literatura. Acta Paulista de Enfermagem, 25(1), pp. 150-154. DOI: https://doi.org/10.1590/S0103-21002012000800023.
Shalan, S., Nasr, J. J., & Belal, F. (2014). Determination of tizoxanide, the active metabolite of nitazoxanide, by micellar liquid chromatography using a monolithic column. Application to pharmacokinetic studies. Analytical Methods, 6(21), pp. 8682-8689. DOI: https://doi.org/10.1039/C4AY00310A.
Shang, T., Wang, C. D., Ren, L., Tian, X. H., Li, D. H., Ke, X. B., ... & Yang, A. Q. (2013). Synthesis and characterization of NIR-responsive Au rod@ pNIPAAm-PEGMA nanogels as vehicles for delivery of photodynamic therapy agents. Nanoscale research letters, 8(1), pp. 1-8. DOI: 10.1186/1556-276X-8-4.
Shigyo, K., Ocheretina, O., Merveille, Y. M., Johnson, W. D., Pape, J. W., Nathan, C. F., & Fitzgerald, D. W. (2013). Efficacy of nitazoxanide against clinical isolates of Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy, 57(6), pp. 2834-2837. DOI: https://doi.org/10.1128/aac.02542-12.
Srikala, S. V., Priya, N. S., & Nadendla, R. R. (2020). Formulation, Characterization and Antihelminthic Activity Testing of Nitazoxanide Superporous Hydrogel Tablets. Journal of Drug Delivery and Therapeutics, 10(3-s), pp. 26-36. DOI: 10.22270/jddt.v10i3-s.4130.
Somvanshi, V. S., Ellis, B. L., Hu, Y., & Aroian, R. V. (2014). Nitazoxanide: nematicidal mode of action and drug combination studies. Molecular and biochemical parasitology, 193(1), pp. 1-8. DOI: https://doi.org/10.1016/j.molbiopara.2013.12.002.
Suresh, C. H., Meghana, D., Beulah, K., Soujanya, M., Prathima, C., & Sandhya, G. (2016). Design And In vitro Characterization Of Nitazoxanide Sustained Release Tablets. J Pharmacol, 6(2), pp. 4029-4034. DOI: 10.7439/ijpr.v6i2.3017.
Tilmanis, D., van Baalen, C., Oh, D. Y., Rossignol, J. F., & Hurt, A. C. (2017). The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide. Antiviral research, 147, pp. 142-148. DOI: 10.1016/j.antiviral.2017.10.002.
Tilmanis, D., Koszalka, P., Barr, I. G., Rossignol, J. F., Mifsud, E., & Hurt, A. C. (2020). Host-targeted Nitazoxanide has a high barrier to resistance but does not reduce the emergence or proliferation of oseltamivir-resistant influenza viruses in vitro or in vivo when used in combination with oseltamivir. Antiviral Research, 104851. DOI: https://doi.org/10.1016/j.antiviral.2020.104851.
Wang, Y. M., Lu, J. W., Lin, C. C., Chin, Y. F., Wu, T. Y., Lin, L. I., ... & Ho, Y. J. (2016). Antiviral activities of niclosamide and nitazoxanide against chikungunya virus entry and transmission. Antiviral research, 135, 81-90. DOI: 10.1016/j.antivira1.2016.10.003.
Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., ... & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research, 30(3), pp. 269-271. DOI: https://doi.org/10.1038/s41422-020-0282-0.
Weaver, S. C., & Forrester, N. L. (2015). Chikungunya: Evolutionary history and recent epidemic spread. Antiviral research, 120, 32-39. DOI: https://doi.org/10.1016/j.antiviral.2015.04.016.
White Jr, A. C. (2004). Nitazoxanide: a new broad spectrum antiparasitic agent. Expert review of anti-infective therapy, 2(1), pp. 43-49. DOI: 10.1586/14787210.2.1.43.
World Health Organization. (2020). WHO Coronavirus Disease (COVID-19) Dashboard. Recuperado de https://covid19.who.int/?gclid=Cj0KCQiA3Y-ABhCnARIsAKYDH7uq-C9cugjRYq2Ha0POjSHrtPgs7wdXyfggC4CCv_T7Hhe1MeQWn1EaAqQGEALw_wcB.
Wouters, J., & Quéré, L. (2012). Pharmaceutical Salts and Co-Crystals. The Royal Society of Chemistry: Cambridge, UK, 351–371. DOI: https://doi.org/10.1039/9781849733502.
Zhang, R., Shang, L., Jin, H., Ma, C., Wu, Y., Liu, Q., ... & Gao, H. (2010). In vitro and in vivo antileishmanial efficacy of nitazoxanide against Leishmania donovani. Parasitology research, 107(2), pp. 475-479. DOI: https://doi.org/10.1007/s00436-010-1906-y.
Zhu, Y. J., & Chen, F. (2015). pH‐responsive drug‐delivery systems. Chemistry–An Asian Journal, 10(2), pp. 284-305. DOI: https://doi.org/10.1002/asia.201402715.
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., ... & Niu, P. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382, pp. 727-733. DOI: 10.1056/NEJMoa2001017.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Beatriz Santiago de Matos Monteiro Lira; Valéria Carlos de Sousa; Francisco Ítalo de Sousa Brito; André Luis Menezes Carvalho
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.