COVID-19: As va]cinas de DNA / RNA se integram ao genoma?
DOI:
https://doi.org/10.33448/rsd-v10i1.12103Palavras-chave:
Vacina; COVID-19; Coronavírus; RNA; DNA.Resumo
A nova pandemia de coronavírus trouxe a necessidade de pesquisadores trabalharem incansavelmente na busca por terapias ou vacinas que permitissem controlar a disseminação do vírus pelo mundo. Felizmente, existem duas vacinas de RNA contra COVID-19 que concluíram os testes clínicos e foram aprovadas em alguns países. São as primeiras vacinas de terceira geração aprovadas na história e em registro de tempo. Mas, ainda temos algumas preocupações sobre a segurança das vacinas de DNA / RNA. Trazemos aqui uma discussão sobre a segurança do DNA / RNA: essas vacinas podem ser integradas ao genoma? Na verdade, as vacinas de DNA têm uma chance infinita de se integrar ao genoma da célula, mas essa chance infinita é igual a zero quando usadas com vacinas baseadas em RNA. As vacinas à base de ácido nucléico (DNA e RNA) têm se correspondido em vantagens, tornando-se alternativas promissoras para garantir a imunização do novo coronavírus.
Referências
Baric, R. S. (2020). Emergence of a Highly Fit SARS-CoV-2 Variant. New England Journal of Medicine. 10.1056/NEJMcibr2032888.
Campos, E. V. R., Pereira, A. E. S., de Oliveira, J. L., et al. (2020). How can nanotechnology help to combat COVID-19? Opportunities and urgent need. Journal of Nanobiotechnology. 18(1):1–23. https://doi.org/10.1186/s12951-020-00685-4.
Fuller, D. H., & Berglund, P. (2020). Amplifying RNA vaccine development. New England Journal of Medicine. 382(25):2469-2471.10.1056 / NEJMcibr2009737.
Koirala, A., Jin Joo, Y., Khatami, A., Chiu, C., & Britton, P. N. (2020). Vaccines for COVID-19: the current state of play. Pediatric Respiratory Reviews. 10.1016 / j.prrv.2020.06.010.
Kutzler, M. A., & Weiner, D. B. (2008). DNA vaccines: ready for prime time? Nature Reviews Genetics. 2008; (9)10:776–788. 10.1038/nrg2432.
Ledford, H. (2020). Moderna COVID vaccine becomes second to get US authorization: Two RNA vaccines will be useful as US infections surge, but the speedy authorizations complicate clinical trials. Nature News. <https://www.nature.com/articles/d41586-020-03593-7>.
Liu, M. A. (2019). A Comparison of Plasmid DNA and mRNA as Vaccine Technologies. Vaccines. 2019; 7(2), 37. https://doi.org/10.3390/vaccines7020037.
Mahase, E. (2020). Covid-19: What do we know about the late stage vaccine candidates? British Medical Journal Publishing Group. 371:m4576. https://doi.org/10.1136/bmj.m4576.
Mahase, E. (2020b). Covid-19: UK approves Pfizer and BioNTech vaccine with rollout due to start next week. British Medical Journal Publishing Group.
Mufamadi, M. S. (2020). Nanotechnology shows promise for next-generation vaccines in the fight against COVID-19. Material Matters. 45 (12): 981-982. 10.1557 / mrs.2020.307.
Naik, R., & Peden, K. (2020). Regulatory Considerations on the Development of mRNA Vaccines. In: Current Topics in Microbiology and Immunology. Springer, Berlim, Heidelberg. https://doi.org/10.1007/82_2020_220.
Pacheco, T. J. A., Silva, F. M., Souza, D. G., Silva, V. C. M., & Faria, R. S. (2020a). Coronavirus disease 2019 (COVID-19): Updated evidence of comparative overview, diagnosis and treatments. Revista Cereus. 12(3):228–243. 10.18605/2175-7275/cereus.v12n3p228-243.
Pacheco, T. J. A., Silva, V. C. M., & Souza, D. G. (2020b). Nano COVID-19 Vaccines: the firsts RNA lipid nanoparticle vaccines being approved from history – Review. Research, Society and Development. 2020b; 9(12), e20191211123. 10.33448/rsd-v9i12.11123.
Ulmer, J. B., Mason, P. W., Geall, A., Mandl, C. W. (2012). RNA-based vaccines. Vaccine. 30(30), 4414–4418. 10.1016 / j.vaccine.2012.04.060.
Who. World Health Organization. (2020). Draft landscape of COVID-19 candidate vaccines. <https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines>.
Wu, D., Koganti, R., Lambe, U. P., Yadavalli, T., Nandi, S. S., & Shukla, D. (2020). Vaccines and Therapies in Development for SARS-CoV-2 Infections. J. Clin. Med. 2020, 9(6), 1885. https://doi.org/10.3390/jcm9061885.
Wang, Z., Troilo, P. J., Wang, X., Griffiths, I. I. T. G., Pacchione, S. J., Barnum, A. B., et al. (2004). Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 11: 711–721. https://doi.org/10.1038/sj.gt.3302213.
Ye, T., Zhong. Z., García-Sastre, A., Schotsaert, M., & Geest, B. G. D. (2020). Current Status of COVID-19 (Pre) Clinical Vaccine Development. Angew.Chem. Int. Ed. 59, 18885–18897. International Edition: doi.org/10.1002/anie.202008319. German Edition: doi.org/10.1002/ange.202008319.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Thyago José Arruda Pacheco; Victor Carlos Mello da Silva; Danielle Galdino de Souza; Maria Blandina Santos Borges; Sebastião Andrade e Silva
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.