Produção de cerveja funcional com adição de probiótico: Saccharomyces boulardii

Autores

DOI:

https://doi.org/10.33448/rsd-v10i2.12211

Palavras-chave:

Leveduras; Probióticos; Propriedades sensoriais.

Resumo

As indústrias têm investido no desenvolvimento de produtos funcionais, como os produzidos com microrganismos probióticos. O objetivo deste estudo foi desenvolver uma cerveja do tipo Pilsen com propriedades funcionais por meio da adição do probiótico Saccharomyces boulardii. A cerveja foi fermentada com fermento comercial de baixa fermentação. A seguir, a cultura probiótica foi adicionada, avaliando seu potencial probiótico. Os aspectos microbiológicos, sensoriais e físico-químicos foram avaliados nos produtos obtidos. A cepa de S. boulardii apresentou viabilidade probiótica após a confirmação da resistência aos testes de ácido, sais biliares e álcool etílico, mantendo níveis de formação de colônias superiores aos indicados pela legislação durante os 28 dias de armazenamento. A cerveja com adição de probióticos não diferiu sensorialmente da cerveja comercial quanto ao aroma, sabor, aspecto geral e cor. Os resultados das análises sensoriais, físico-químicas e microbiológicas mostraram a viabilidade da produção de cerveja probiótica com a adição de S. boulardii.

Referências

Almada, C. N., Martinez, R. C. & Sant´Ana, A. S. (2015). Characterization of the intestinal microbiota and its interaction with probiotics and health impacts. Applied Microbiology and Biotechnology, 99 (1), 4175-4199.

Andriantsoanirina, V., Allano, S., Butel, M. J. & Aires, J. (2013). Tolerance of Bifidobacterium human isolates to bile, acid and oxygen. Anaerobe, 21 (1), 39-42.

Bamforth, C. (2008). Food, Fermentation and Microorganisms. New Jersey: John Wiley & Sons.

Basso, R. F., Alcarde, A. R. & Portugal, C. B. (2016). Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Research International, 86 (1), 112-120.

Brasil, Ministério da Agricultura. Secretaria Nacional de Defesa Agropecuária (1997). Decreto nº 2.314, de 4 de setembro de 1997.Diário oficial da União.

Bustos, A. Y., De Valdez, G. F., Fadda, S. & Taranto, M. P. (2018). New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health. Food Research International, 112 (1), 250-262.

Ceccaroni, D., Sileoni, V., Marcon, O., De Francesco, G., Lee, E. G. & Peretti, G. (2018). Specialty rice malt optimization and improvement of rice malt beer aspect and aroma. LWT – Food Science and Technology, 99 (1), 299-305.

Chrysochou, P. (2014). Drink to get drunk or stay healthy? Exploring consumers’ perceptions, motives and preferences for light beer. Food Quality and Preference, 31 (1), 156-163.

Cimini, A. & Moresi, M. (2018). Combined enzymatic and crossflow microfiltration process to assure the colloidal stability of beer. LWT – Food Science and Technology, 90 (1), 132-137.

Deng, Y., Bi, H., Yin, H., Yu, J., Dong, J., Yang, M. & Ma, Y. (2018). Influence of ultrasound assisted thermal processing on the physicochemical and sensorial properties of beer. Ultrasonics Sonochemistry, 40 (1), 166–173.

Di Monaco, R., Cavella, S., Di Marzo, S. & Masi, P. (2004). The effect of expectations generated by brand name on the acceptability of dried semolina pasta. Food Quality and Preference, 15 (5), 429-437.

Duda-Chodak, A., Tarko, T., Satora, P. & Sroka, P. (2015). Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. European Journal of Nutrition, 54 (3), 325-341.

FAO/WHO. (2002). Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria Avaliable in: http://www.fao.org. (Acessed 15 November 2018).

Franz, C. M. A. P. & Holzapfel, W. H. (2011). The Importance of Understanding the Stress Physiology of Lactic Acid Bacteria. In: Tsakalidou, E. & Papadimitriou, K. (eds) Stress Responses of Lactic Acid Bacteria. Food Microbiology and Food Safety, Boston: Springer.

He, Y., Dong, J., Yin, H., Chen, P., Lin, H. & Chen, L. (2014). Monitoring of the production of flavour compounds by analysis of the gene transcription involved in higher alcohol and ester formation by the brewer's yeast Saccharomyces pastorianus using a multiplex RT‐qPCR assay. Journal of the Institute Brewing, 120 (2), 119-126.

Horwitz, W. & Latimer, G. (2005). Official methods of analysis of AOAC International (18th ed). Gaithersburg: AOAC International.

Kelesidis, T. & Pothoulakis, C. (2012). Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therapeutic Advances in Gastroenterology, 5 (2), 111-125.

Kemsawasd, V. & Chaikham, P. (2018). Survival of probiotics in soy yoghurt plus mulberry (c.v. Chiang Mai 60) leaf extract during refrigerated storage and their ability to tolerate gastrointestinal transit. LWT – Food Science and Technology, 93 (1), 94-101.

Krebs, G., Muller, M., Becker, T. & Gastl, M. (2018). Characterization of the macromolecular and sensory profile of non-alcoholic beers produced with various methods. Food Research International, 166 (1), 508-517.

Kumar, A. & Kumar, D. (2015). Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe, 33 (1), 117-123.

McFarland, L. V. (2010). Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World Journal of Gastroenterology, 16 (18), 2202-2222.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31 (3), 426-428.

Muller, J. L., Protti, K. L., Machado, M. S., Lacerda, L. L. V., Bresolin, T. M. B. & Podlech, P. S. (2007). Comparison of Saccharomyces boulardii growth in an air-lift fermentor and in a shaker. Food Science and Technology, 27 (4), 688-693.

Nag, A. & Das, S. (2013). Improving ambient temperature stability of probiotics with stress adaptation and fluidized bed drying. Journal of Functional Foods, 5 (1), 170-177.

Pan, X., Chen, F., Wu, T., Tang, H. & Zhao, Z. (2009). The acid, bile tolerance and antimicrobial property of Lactobacillus acidophilus NIT. Food Control, 20 (6), 598-602.

Putra, M. D., Abasaeed, A. E., Al-Zahrani, S. M., Gaily, M. H., Sulieman, A. K., Zeinelabdeen, M. A. & Atiyeh, H. K. (2013). Production of fructose from highly concentrated date extracts using Saccharomyces cerevisiae. Biotechnology Letter, 36 (3), 531-536.

Rajkowska, K., Kunicka-Styczynska, A. & Rygala, A. (2012). Probiotic Activity of Saccharomyces cerevisiae var. boulardii Against Human Pathogens. Food Technology and Biotechnology, 50 (2), 230-236.

Ramsey, I., Ross, C., Ford, R., Fisk, I., Yang, Q., Gomez-Lopez, J. & Hort, J. (2018). Using a combined temporal approach to evaluate the influence of ethanol concentration on liking and sensory attributes of lager beer. Food Quality and Preference, 68 (1), 292-303.

Ribéreau-Gayon, J. E. & Peynaud, E. (1996). Análise e controllo del vini. Bologna: Agricole.

Schmidell, W., Lima, U. A., Aquarone, E. & Borzani, W. (2001). Biotecnologia Industrial. Engenharia Bioquímica. São Paulo: Edgard Blücher Ltda.

Schönberger, C. & Kostelecky, T. (2012). 125th Anniversary Review: The Role of Hops in Brewing. Journal of the Institute of Brewing, 117 (3), 259-267.

Sohrabvandi, S., Razavi, S. H., Mousavi, S. M. & Mortazavian, A.M. (2010). Viability of Probiotic Bacteria in Low Alcohol- and NonAlcoholic Beer During Refrigerated Storage. Philippine Agricultural Scientist, 93 (1), 24-28.

SSB - Scandinavian School of Brewing (2016). Available in: www.beercalc.com. (Acessed 25 July 2019).

Stack, H. M., Kearney, N., Stanton, C., Fitzgerald, G. F. & Ross, R. P. (2010). Association of Beta-Glucan Endogenous Production with Increased Stress Tolerance of Intestinal Lactobacilli. Applied and Environmental Microbiology, 76 (2), 500-507.

Stewart, G. G. (2014). Saccharomyces cerevisiae. Encyclopedia of Food Microbiology, 2 (1), 309-315.

Sulieman, A. K., Putra, M. D., Abasaeed, A. E., Gaily, M. H., Al-Zahrani, S. M. & Zeinelabdeen, M. A. (2018). Kinetic modeling of the simultaneous production of ethanol and fructose by Saccharomyces cerevisiae. Electronic Journal of Biotechnology, 34 (1), 1-8.

Ventura, M., O’Toole, P. W., De Vos, W. M. & Van Sinderen, D. (2018) Selected aspects of the human gut microbiota. Cellular and Molecular Life Sciences, 75 (1), 81-82.

Zoumpopoulou, G., Pot, B., Tsakalidou, E, & Papadimitriou, K. (2017). Dairy probiotics: Beyond the role of promoting gut and immune health. International Dairy Journal, 67 (1), 46-60.

Downloads

Publicado

03/02/2021

Como Citar

REITENBACH, A. F. .; IWASSA, I. J. .; BARROS, B. C. B. . Produção de cerveja funcional com adição de probiótico: Saccharomyces boulardii. Research, Society and Development, [S. l.], v. 10, n. 2, p. e5010212211, 2021. DOI: 10.33448/rsd-v10i2.12211. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12211. Acesso em: 5 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas