Influência de agentes precipitantes no desempenho de catalisadores de ferro na desidrogenação do etilbenzeno

Autores

DOI:

https://doi.org/10.33448/rsd-v10i2.12425

Palavras-chave:

Estireno; Etilbenzeno; Catalisadores de ferro; Hematita; Óxido de ferro.

Resumo

A desidrogenação catalítica do etilbenzeno, com vapor de água, é a tecnologia dominante para a produção industrial de estireno, que é uma matéria-prima extensivamente usada na manufatura de plásticos. O catalisador comercial é constituído de óxido de ferro dopado com potássio e cromo e apresenta baixa área superficial específica, além de ser susceptível à desativação. Visando à obter catalisadores mais eficientes que aqueles disponíveis comercialmente estudou-se, neste trabalho, o efeito do agente precipitante sobre o desempenho de catalisadores de ferro, baseados em hematita. As amostras foram preparadas pelo método sol-gel, usando hidróxido de amônio, hidróxido de potássio e carbonato de potássio como agentes precipitantes e avaliadas na desidrogenação do etilbenzeno a 480, 530, 580 e 630 oC. Observou-se que o agente precipitante mais adequado foi o carbonato de potássio, que produziu o catalisador mais ativo, com área superficial específica e resistência à redução mais elevadas. Na temperatura dos processos industriais (530 oC), esse catalisador foi quatro vezes mais ativo que uma amostra comercial.

Referências

Addiego,W. P., Liu, W., & Borger, T. (2001). Iron oxide-based honeycomb catalysts for the dehydrogenation of ethylbenzene to styrene. Catalysis Today, 69, 25-31. https://doi.org/10.1016/S0920-5861(01)00351-0

Araújo, G. C., & Rangel, M. C. (2000). An environmental friendly dopant for the high-temperature shift catalysts. Catalysis Today, 62, 201–207. https://doi.org/10.1016/S0920-5861(00)00421-1

Borgna, A., Sepúlveda, J., Magni, S. I., & Apesteguia, C., R. (2004). Active sites in the alkylation of toluene with methanol: a study by selective acid–base poisoning. Applied Catalysis A- General, 276(1-2), 207-215. https://doi.org/10.1016/j.apcata.2004.08.007

Brito, M. L., Ferreira Júnior, J. M., Santos, L. C. L. dos, & Simonelli, G. (2020). Advances in ethanol autothermal reform for hydrogen gas production: a review. Research, Society and Development, 9(5), e126953070. https://doi.org/10.33448/rsd-v9i5.3070

Cui, X., Tang. C., Liu, X. M., Wang. C., Ma. W., & Zhang. Q. (2018). Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts. Chemistry - A European Journal, 24(69), 18494–18501. https://doi.org/10.1002/chem.201800535

Dolgykh, L. Y., Stolyarchuk, I. L., Staraya, L. A., Vasylenko, I. V., Pyatnitsky, Y. I., & Strizhak, P. E. (2015). Steam Reforming of Ethanol over Manganese and Iron Oxides for Hydrogen Production. Adsorption Science & Technology, 33, 715–721. https://doi.org/10.1260/0263-6174.33.6-8.715

Flego, C., Cosentino, G., & Tagliabue, M. (2004). Three-element mixed oxides: a new approach to basic catalysts. Applied Catalysis A- General, 270(1-2), 113-120. https://doi.org/10.1016/j.apcata.2004.04.035

Fonseca, J., Bion, N., Licea, Y. E., Morais, C. M., Rangel, M. C., Duprez, D., & Epron, F. (2019). Unexpected redox behaviour of large surface alumina containing highly dispersed ceria nanoclusters. Nanoscale, 11(3), 1273-1285. https://doi.org/10.1039/C8NR07898J

Gomez Sanz, S., McMillan, L., McGregor, J., Zeitler, J. A., Al-Yassir, N., Al-Khattaf, S., & Gladden, L. F. (2015). A new perspective on catalytic dehydrogenation of ethylbenzene: The influence of side-reactions on catalytic performance. Catalysis Science and Technology, 5 (7), 3782–3797. https://doi.org/10.1039/C5CY00457H

Herzog, B. D., & Raso, H. F. (1984). In situ catalyst reactivation: used ethylbenzene dehydrogenation catalyst with agglomerated potassium promoter. Industrial & Engineering Chemistry Product Research and Development, 23, 187-196. https://doi.org/10.1021/i300014a002

Lee, E.H. (1974). Iron Oxide Catalysts for Dehydrogenation of Ethylbenzene in the Presence of Steam. Catalysis Reviews, 8(2), 285-305. https://doi.org/10.1080/01614947408071864

Lima, S. B., Borges, S. M. S., Rangel, M. C., & Marchetti, S. G. (2013). Effect of iron content on the catalytic properties of activated carbon-supported magnetite derived from biomass. Journal of the Brazilian Chemical Society, 24, 344-354. http://dx.doi.org/10.5935/0103-5053.20130044

Lødeng, R., Lunder, O., Lein, J. E., Dahl, P. I., & Svenum, I. H. (2018). Synthesis of light olefins and alkanes on supported iron oxide catalysts. Catalysis Today, 299, 47–59. https://doi.org/10.1016/j.cattod.2017.06.039

McDevitt, N. T., & Baun, W. L. (1964). Infrared absorption study of metal oxides in the low frequency region (700-240 cm−1). Spectrochim. Acta, 20, 799-808. https://doi.org/10.1016/0371-1951(64)80079-5

Medeiros, A. S. R., & Rangel, M. C. (2010). Influence of the Sodium-based Precipitants on the Properties of Aluminum-doped Hematite Catalysts for Ethylbenzene Dehydrogenation. Studies in Surface Science and Catalysis, 175, 815-818. https://doi.org/10.1016/S0167-2991(10)75167-3

Miller, F. A., & Wilkins, C. H. (1952). Infrared Spectra and Characteristic Frequencies of Inorganic Ions. Anal. Chem, 24, 1253. https://doi.org/10.1021/ac60068a007

Nyquist, R. A., & Kagel, R. O. (1971). Infrared Spectra of Inorganic compounds. Orlando: Academic Press.

Oliveira, A. C., Fierro, J. L. G., Valentini, A., Nobre, P. S. S., & Rangel, M. C. (2003). Non-toxic Fe-based catalysts for styrene synthesis: The effect of salt precursors and aluminum promoter on the catalytic properties. Catalysis Today, 85, 49. https://doi.org/10.1016/S0920-5861(03)00193-7

Oliveira, M. L. de, Souza, L. G. M. D., Pereira Neto, R. V., & Lima, J. C. de. (2020). Obtaining and characterization of a composite with polymer matrix and corn cob waste filler. Research, Society and Development, 9(12), e32791210849. https://doi.org/10.33448/rsd-v9i12.10849

Pereira, A. S., Shitsuka, D. M., Pareira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica.[e-book]. Santa Maria: UAB/NTE/UFSM.

Rangel, M. C., Querino, P. S., Borges, S. M. S., Marchettic, S. G., Assaf, J. M., Vásquez, D. P. R., Rodella, C. B., Silva, T. F., Silva, A. H. M., & Ramon, A. P. (2017). Hydrogen purification over lanthanum-doped iron oxides by WGSR. Catalysis Today, 296, 262-271. https://doi.org/10.1016/j.cattod.2017.05.058

Rosário, R. L. do., Santos, R. C., Santos, A. S. dos., Carvalho, A., Brunet, S., & Pontes, L. A. M. (2020). Niobium oxide (Nb2O5) as support for CoMo and NiW catalysts in the hydrodesulfurization reaction of 3-methylthiophene. Research, Society and Development, 9(11), e74391110307. https://doi.org/10.33448/rsd-v9i11.10307

Schertmann, U., & Fischer, W.R. (1973). Natural “Amorphous” ferric Hydroxde. Geoderma, 10, 237. https://doi.org/10.1016/0016-7061(73)90066-9

Serra, J. M., Corma, A., Farrusseng, D., Baumes. L., Mirodatos, C., Flego, C., & Perego, C. (2003). Styrene from toluene by combinatorial catalysis. Catalysis Today, 81(3), 425-436. https://doi.org/10.1016/S0920-5861(03)00142-1

Silva, M. C. C. de P. e., Leite, V. D., Albuquerque, M. V. da C., Cartaxo, A. da S. B., Ramos, R. de O., & Lopes, W. da S. (2020). Treatment of leached from landfill applying Chlorella sp. immobilized in different polymeric matrices. Research, Society and Development, 9(12), e7691210865. https://doi.org/10.33448/rsd-v9i12.10865

Zhang, Y., Wu, L., Wang, Y., Zhang, Y., Wang, H., Wang, X., Chen, X. D., & Wu, Z. (2021). Highly dispersed titania-supported iron oxide catalysts for efficient heterogeneous photo-Fenton oxidation: Influencing factors, synergistic effects and mechanism insight. Journal of Colloid and Interface Science, 587, 467–478. 10.1 https://doi.org/016/j.jcis.2020.12.008

Publicado

14/02/2021

Como Citar

VARELA, M. do C. R.; BARRAL, B. C. de O. .; LIMA , S. P. de .; LIMA , S. B. . Influência de agentes precipitantes no desempenho de catalisadores de ferro na desidrogenação do etilbenzeno . Research, Society and Development, [S. l.], v. 10, n. 2, p. e25810212425, 2021. DOI: 10.33448/rsd-v10i2.12425. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12425. Acesso em: 8 jul. 2024.

Edição

Seção

Engenharias