Influência da composição em ácidos graxos da dieta na atividade enzimática e histologia digestiva do jundiá (Rhamdia quelen)
DOI:
https://doi.org/10.33448/rsd-v10i3.12530Palavras-chave:
Farinha de peixe; Crescimento; Larvicultura; Concentrado proteico de soja.Resumo
Os ácidos graxos da dieta podem influenciar o desenvolvimento do trato digestório e a ativação inicial das enzimas digestivas em peixes. O objetivo deste estudo foi avaliar o efeito do perfil lipídico da dieta na ontogenia e atividade de enzimas digestivas em pós-larvas de jundiá alimentadas com dietas práticas. Foram testadas cinco dietas, substituindo o fígado de aves por concentrado protéico de soja (CPS) ou farinha de peixe (FP): controle, 15CPS, 30CPS, 15FP e 30FP. A atividade enzimática dos peixes foi analisada a partir de 32 horas após a fertilização. Foram analisadas a protease, tripsina, quimiotripsina, lipase, amilase e maltase. O desenvolvimento histológico foi analisado desde o início da alimentação até 28 dias. A atividade enzimática apresentou picos para as pós-larvas alimentadas com a dieta 15CPS e os peixes alimentados com a dieta 15FP apresentaram melhor crescimento. O desenvolvimento do sistema digestório não sofreu danos das dietas ofertadas. Pós-larvas alimentadas com a dieta 30CPS mostraram redução do desenvolvimento do trato digestório. A dieta 15FP proporciona bom perfil lipídico para pós-larvas de jundiá.
Referências
Albro, P. W., Hall, R. D., Corbett. J. T., & Schroeder, J. (1985). Activation of nonspecific lipase (EC3.1.1.) by bile salts. Biochimica et Biophysica Acta, 835, 477-490. https://doi.org/10.1016/0005-2760(85)90117-1
Alveal, K., Silva, A., Lohrmann, K. B., & Viana, M. T. (2019). Morphofunctional characterization of the digestive system in the palm ruff larvae, Seriolella violacea under culture conditions. Aquaculture, 501, 51-61. https://doi.org/10.1016/j.aqua culture.2018.10.020
Asil, S. M., Kenari, A. A., Miyanji, G. R., & Van Der Kraak, G. (2017). The influence of dietary arachidonic acid on growth, reproductive performance, and fatty acid composition of ovary, egg and larvae in an anabantid model fish, Blue gourami (Trichopodus trichopterus; Pallas, 1770). Aquaculture, 476, 8-18. https://doi.org/10.1016/j.aquaculture.2017.03.048
American Veterinary Medical Association (AVMA) (2007). Guidelines on Euthanasia (Formerly Report of the AVMA Panel on Euthanasia), American Veterinary Medical Association (AVMA), United States of America.
Babaei, S. S., Abedian Kenari, A., Nazari, R., & Gisbert, E. (2011). Developmental changes of digestive enzymes in Persian sturgeon Acipenser persicus during larval ontogeny. Aquaculture, 318, 138-144. https://doi.org/10.1016/j.aquaculture.2011.04.032
Bernfeld, P. (1955). Amylases α e β: colorimetric assay methods. In: Colowick, S.P.; Kaplan, N.O. Methods in Enzymology, Academic Press
Bradford, M. M. A. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Cargnin-Ferreira, E., & Sarasquete Reiriz, C. (2008). Histofisiología de moluscos bivalvos marinos. CSIC, 94p.
Coldebella, I. J., Radünz Neto, J., Mallmann, C. A., Veiverberg, C. A., Bergamin, G. T., Pedron, F. A., Ferreira, D., & Barcellos, L. J. G. (2011). The effects of different protein levels in the diet on reproductive indexes of Rhamdia quelen females. Aquaculture, 312, 137-144. https://doi.org/10.1016/j.aquaculture.2010.12.021
Conceição, L., Aragão, C., & Rønnestad, I. Proteins. (2011). In: Holt, G .J. Larval Fish Nutrition, 3, 88-120
Corrêa, C. F., Aguiar, L. H., Lundstedt, L. M., & Moraes, G. (2007). Responses of digestive enzymes of tambaqui Colossoma macropomum to dietary cornstarch changes and metabolic inferences. Comparative Biochemistry and Physiology, 147, 857-862. https://doi.org/10.1016/j.cbpa.2006.12.045
Cui, K., Cheng, D., Ma, Z., Qin, J.G., Jiang, S., Sun, D., & Ma, S. (2017). Ontogenetic development of digestive enzymes in larval and juvenile crimson snapper Lutjanus erythopterus (Bloch 1790). Aquaculture Research, 48, 4533-4544. https://doi.org/10.1111/are.13278
Drew, M. D., Borgeson, T. L., & Thiessen, D. L. (2007). A review of processing of feed ingredients to enhance diet digestibility in finfish. Animal Feed Science and Technology, 138, 118-136. https://doi.org/10.1016/j.anifeedsci.2007.06.019
Mohd Faudzi, N., Yong, A. S. K., Shapawi, R., Senoo, S., Biswas, A., & Takii, K. (2018). Soy protein concentrate as an alternative in replacement of fish meal in the feeds of hybrid grouper, brown‐marbled grouper (Epinephelus fuscoguttatus) × giant grouper (Epinephelus lanceolatus) juvenile. Aquaculture Research, 49, 431-441. https://doi.org/10.1111/are.13474
Fontinelli, E., & Radünz Neto, J. (2007). Efeito do concentrado proteico de soja em rações, com e sem suplementação em aminoácidos, para pós-larvas de jundiá (Rhamdia quelen). Revista Brasileira de Agrociência, 13, 225-229.
Gao, X. Q., Liu, Z. F., Guan, C. T., Huang, B., Lei, J. L., Li, J., Guo, Z., Wang, Y., & Hong, L. (2016). Developmental changes in digestive enzyme activity in American shad, Alosa sapidissima, during early ontogeny. Fish Physiology and Biochemistry, 43, 397-409. https://doi.org/10.1007/s10695-016-0295-2
Gisbert, E., Giménez, G., Fernández, I., Kotzamanis, Y., & Estévez, A. (2008). Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture, 287, 381-387. https://doi.org/10.1016/j.aquaculture.2008.10.039
Hartman, L., & Lago, B. C. (1973). A rapid preparation of fatty methyl esters from lipids. Laboratory Practice, 22, 475-477.
Hidalgo, M. C., Urea, E., & Sanz, A. (1999). Comparative study of digestive enzymes in fish with different nutritional habits: Proteolytic and amylase activities. Aquaculture, 170, 267-283. https://doi.org/10.1016/S0044-8486(98)00413-X
Hien, T. T. T., Phu, T. M., Tu, T. L. C., Tien, N. V., Duc, P. M., & Bengtson, D. A. (2017). Effects of replacing fish meal with soya protein concentrate on growth, feed efficiency and digestibility in diets for snakehead, Channa striata. Aquaculture Research, 48, 3174-3181. https://doi.org/10.1111/are.13147
Hummel, B. C. W. (1959). A modified spectrophotometric determination of chymotrypsin, trypsin and thrombin. Canadian Journal of Biochemistry and Physiology, 37, 1393-1399. https://doi.org/10.1139/o59-157
Izquierdo, M., & Koven, W. (2011). Lipids. In: Holt, I. Larval Fish Nutrition. Wiley Online Library. 448 p.
Ji, H., Li, J., & Liu, P. (2011). Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idellus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 159, 49-56. https://doi.org/10.1016/j.cbpb.2011.01.009
Krogdahl, A., Penn, M., Torsen, J., Refstie, S. & Bakke, A. M. (2010). Important antinutrients in plant feedstufs for aquaculture: an update on recent fndings regarding responses in salmonids. Aquaculture Research, 41, 333–344. https://doi.org/10.1111/j.1365-2109.2009.02426.x
Kumar, V., Sinha, A. K., Makkar, H. P. S., Boeck, G. D., & Becker, K. (2011). Phytate and phytase in fish nutrition. Journal of Animal Physiology and Animal Nutrition, 96, 335–364. https://doi.org/10.1111/j.1439-0396.2011.01169.x
Kumar, S., Sándor Zs, J., Nagy, Z., Fazekas, G., Havasi, M., Sinha, A. K., Boeck, G., & Gál, D. (2017). Potential of processed animal protein versus soybean meal to replace fish meal in practical diets for European catfish (Silurus glanis): growth response and liver gene expression. Aquaculture Nutrition, 23, 1179-1189. https://doi.org/10.1111/anu.12487
Lazo, J. P., Darias, M. J., & Gisbert, E. (2011). Ontogeny of the digestive tract. In: Holt, I. Larval Fish Nutrition. Wiley Online Library. 448 p.
Liu, X., Ye, J., Wang, K., Kong, J., Yang, W., & Zhou, L. (2012). Partial replacement of fish meal with peanut meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture Research, 43, 745-755. https://doi.org/10.1111/j.1365-2109.2011.02883.x
Mente, E., Solovyev, M. M., Vlahos, N., Rotllant, G., & Gisbert, E. (2017). Digestive Enzyme Activity during Initial Ontogeny and after Feeding Diets with Different Protein Sources in Zebra Cichlid, Archocentrus nigrofasciatus. Journal of the World Aquaculture Society, 48, 831-848. https://doi.org/10.1111/jwas.12381
Mitra, A., Mukhopadhyay, P. K., & Homechaudhuri, S. (2017). Profile of Digestive Enzymes Activity During Early Development of Featherback Chitala chitala (Hamilton, 1822). Proceedings of the Zoological Society, 70,141-149. https://doi 10.1007/s12595-016-0169-8
Mo, W. Y., Man, Y. B., & Wong, M. H. (2018). Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge. Science of the Total Environment, 613, 635-643. https://doi.org/10.1016/j.scitotenv.2017.08.321
Mommsen, T., & Korsgaard, B. (2008). Vitellogenesis. In: Rocha, M. J., Arukwe, A., Kapoor, B. G. Fish Reproduction. Science Publishers, Enfield, N.H., 113-169.
Moura, G. S., Oliveira, M. G. A., & Lanna, E. A. T. (2012). Desempenho e atividade de lipase em tilápias do Nilo. Archivos de Zootecnia, 61, 367-374. http://dx.doi.org/10.4321/S0004-05922012000300005
Mousavi-Sabet, H., Ghasemnezhad, H., & Petrescu-Ma, I. V. (2013). Effects of diet containing enriched Artemia with unsaturated fatty acids and vitamin C on growth, survival and stress resistance of swordtail Xiphophorus hellerii fry. Poeciliid Research, 3, 14-21.
NRC - National Research Council. (2011). Nutrient requirements of fish and shrimp. National Academies Press, 376 p.
El Kertaoui, N., Lund, I., Assogba, H., Domínguez, D., Izquierdo, M. S., Baekelandt, S., Cornet, V., Mandiki, S.N.M., Montero, D., & Kestemont, P. (2019). Key nutritional factors and interactions during larval development of pikeperch (Sander lucioperca). Scientific Reports, 9, 7074. https://doi.org/10.1038/s41598-019-43491-1
Park, H. G., Puvanendran, V., Kellett, A., Parrish, C. C., & Brown, J. A. (2006). Effect of enriched rotifers on growth, survival, and composition of larval Atlantic cod (Gadus morhua). Journal of Marine Science, 63, 285-295. https://doi.org/10.1016/j.icesjms.2005.10.011
Piaia, R., & Radünz Neto, J. (1997). Avaliação de diferentes fontes protéicas sobre o desempenho inicial de larvas do jundiá Rhamdia quelen. Ciência Rural, 27, 319-323. http://dx.doi.org/10.1590/S0103-84781997000200025.
Portella, M. C., Leitão, N. J., Takata, R., & Lopes, T. S. (2012). Alimentação e nutrição de larvas. In: NUTRIAQUA: nutrição e alimentação de espécies de interesse para a aquicultura brasileira, 9, 185-216.
Portella, M. C., Jomori, R. K., Leitão, N. J., Menossi, O. C. C., Freitas, T. M., Kojima, J. T., Lopes, T. S., Clavijo-Ayala, J. A., & Carneiro, D. J. (2014). Larval development of indigenous South American freshwater fish species, with particular reference to pacu (Piaractus mesopotamicus). Aquaculture, 432, 402-417. https://doi.org/10.1016/j.aquaculture.2014.04.032
Rossato, S., Maschio, D., Martinelli, S. G., Nunes, L. M. D. C., Radünz Neto, J., & Lazzari, R. (2018). Fish meal obtained from the processing of Rhamdia quelen: An alternative protein source. Boletim do Instituto de Pesca, 44, 1361-1372. https://doi.org/10.20950/16782305.2018.44.4.350
Sá, M. V. C., Sabry-Neto, H., & Nunes, A. J. P. (2013). Dietary concentration of marine oil affects replacement of fish meal by soy protein concentrate in practical diets for te white shrimp, Litopenaeus vannamei. Aquaculture Nutrition, 19, 199-210. https://doi.org/10.1111/j.1365-2095.2012.00954.x
Sargent, J., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., & Tocher, D. (1999). Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture, 179, 217-229. https://doi.org/10.1016/S0044-8486(99)00191-X
Segura, J. G., Campanharo, J. C., Oliveira, K. R. B., Natori, M. M., Medeiros, A. C. L., & Viegas, E. M. M. (2017). Relação 18:3n3/18:2n6 sobre a digestibilidade de ácidos graxos em pacu. Boletim do Instituto de Pesca, 43, 222-230. https://doi.org/10.20950/1678-2305.2017v43n2p222
Serra, C. R., Almeida, E. M., Guerreiro, I., Santos, R., Merrifield, D. L., Tavares, F., Oliva-teles, A. & Enes, P. (2019). Selection of carbohydrate-active probiotics from the gut of carnivorous fish fed plant-based diets. Scientific Reports, 9, 6384. https://doi.org/10.1038/s41598-019-42716-7
Seong, T., Matsutani, H., Haga, Y., Kitagima, R., & Satoh, S. (2019). First step of non‐fish meal, non‐fish oil diet development for red seabream, (Pagrus major), with plant protein sources and microalgae Schizochytrium sp. Aquaculture Research, 50, 2460-2468. https://doi.org/10.1111/are.14199
Silveira, J., Silva, C.P., Cargnin-Ferreira, E., Alexandre, D., Elias, M.A., & Fracalossi, D. M. (2013). Freshwater catfish jundiá (Rhamdia quelen) larvae are prepared to digest inert feed at the exogenous feeding onset: physiological and histological assessments. Fish Physiology and Biochemistry, 39, 1581-1590. https://doi.org/10.1007/s10695-013-9810-x
Sinha, A. K., Kumar, V., Makkar, H. P. S., De Boeck, G. & Becker, K. (2011) Non-starch polysaccharides and their role in fsh nutrition – A review. Food Chemistry, 127, 1409–1426. https://doi.org/10.1016/j.foodchem.2011.02.042
Tacon, A. G. J., & Akiyama, D. M. (1997). Feed ingredients. In L. R. D’Abramo, D. E. Conklin, & D. M. Akiyama (Eds.), Advances in World aquaculture 6: Crustacean nutrition (pp. 411–472). Baton Rouge, LA: World Aquaculture Society.
Teles, A.O., Salas-Leiva, J., Alvarez-González, C. A., Gisbert, E., Ibarra-Castro, L., Urbiola, J. C. P., & Tovar-Ramírez, D. (2017). Histological study of the gastrointestinal tract in longfin yellowtail (Seriola rivoliana) larvae. Fish Physiology and Biochemistry, 43, 1613-1628. https://doi.org/10.1007/s10695-017-0397-5
Vega-Orellana, O. M., Fracalossi, D.M., & Sugai, J. K. (2006). Dourado (Salminus brasiliensis) larviculture: Weaning and ontogenetic development of digestive proteinases. Aquaculture, 252, 484-493. https://doi.org/10.1016/j.aquaculture.2005.07.002
Vizcaíno, A. J., López, G., Sáez, M.I., Jiménez, J.A., Barros, A., Hidalgo, L., Camacho-Rodríguez, J., Martínez, T. F., Cerón-García, M. C., & Alarcón, F. J. (2014). Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture, 431, 34-43. https://doi.org/10.1016/j.aquaculture.2014.05.010
Yúfera, M., & Darias, M. J. (2007). The onset of exogenous feeding in marine fish larvae. Aquaculture, 268, 53-63. https://doi.org/10.1016/j.aquaculture.2007.04.050
Zambonino Infante, J. L., Gisbert, E., Sarasquete, C., Navarro, I., Gutiérrez, J., & Cahu, C. (2008). Ontogeny and physiology of the digestive system of marine fish larvae. Feeding and digestive functions of fishes, 281-348.
Zambonino Infante, J. L., & Cahu, C. L. (2007). Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: Applications to diet formulation. Aquaculture, 268, 98-105.
Zhou, Z., Ringø, E., Olsen, R. E., & Song, S. K. (2017). Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: A review. Aquaculture Nutrition, 4(1):644-665.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Suzete Rossato ; João Radünz Neto; Alexandra Pretto ; Isadora Liberalesso de Freitas; Eduardo Cargnin Ferreira ; Rafael Lazzari
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.