Alta pressão hidrostática, campos elétricos pulsados e plasma frio na cadeia produtiva de alimentos: Princípios e aplicabilidade industrial

Autores

DOI:

https://doi.org/10.33448/rsd-v10i2.12670

Palavras-chave:

Alta pressão hidrostática; Campo elétrico pulsado; Plasma frio; Tecnologias não térmicas.

Resumo

A busca por tecnologias não térmicas vem alcançando espaço no mercado devido às mudanças dos hábitos alimentares dos consumidores e a preocupação da preservação do meio ambiente. Esta tecnologia é altamente vantajosa para a descontaminação microbiana de produtos alimentícios, incluindo esporulados e micro-organismos patogênicos. Neste contexto, esta revisão objetivou um estudo sistemático da literatura sobre as principais tecnologias não térmicas, utilizando as bases de dados da Science Direct e Web of Science, com a palavra-chave “non-thermal technologies”. Os artigos selecionados foram submetidos para análise no software Vosviewer. Após interpretação dos mapas de densidade obtidos no software percebeu-se que as tecnologias não térmicas mais estudadas, nos últimos cinco anos (2015-2020), foram as tecnologias de alta pressão hidrostática, campo elétrico pulsado e plasma frio. Os principais destaques das tecnologias foram a (i) redução da carga microbiana no alimento, sendo a estrutura celular um fator importante na inativação dos micro-organismos, bem como (ii) a necessidade de aplicações industriais mais sustentáveis, demandando novas tecnologias no mercado.

Referências

Ali, N., Popovic, V. K., Warriner, K., & Zhu, Y. (2019). Effect of thermal, high hydrostatic pressure and ultraviolet-C processing on the microbial inactivation vitamins, chlorophyll, antioxidants, enzyme activity, and color of wheatgrass juice. Journal of Food Process Engineering, 43, 1-8. doi: 10.1111/jfpe.13036

Bahrami, N., Bayliss, D., Chope, G., Penson, S., Perehinec, T., & Fisk, I. D. (2016). Cold plasma: A new technology to modify wheat flour functionality. Food Chemistry, 202, 247-253. doi: 10.1016/j.foodchem.2016.01.113

Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., & Keener, K. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 36(16), 615-626. doi: 10.1016/j.tibtech.2017.11.001

Bourke, P., Ziuzina, D., Han, L., Cullen, P. J., & Gilmore, B. F. (2017). Microbiological interactions with cold plasma. Journal of Applied Microbiology, 123, 308-324. doi: 10.1111/jam.13429

Cebrián, G., Mañas, P., & Condón, S. (2016). Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation. Frontiers in Microbiology, 7, 1-17. doi: 10.3389/fmicb.2016.00734

Christofi, S., Dimitris, M., Katsaros, G., Panagou, E., & Kallithraka, S. (2020). Limit S02 content of wines by applying High Hydrostatic Pressure, 62, 1-10. doi: 10.1016/j.ifset.2020.102342

Delben, J. A., Zago, C. E., Tyhovych, N., Duarte, S., & Vergani, C. E. (2016). Effect of Atmospheric-Pressure Cold Plasma on Pathogenic Oral Biofilms and In Vitro Reconstituted Oral Epithelium. Plos One, 11(5), 1-18. doi: 10.1371/journal.pone.0155427

Dermesonlouoglou, E., Zachariou, I., Andreou, V., & Taoukis, P. S. (2016). Effect of pulsed electric fields on mass transfer and quality of osmotically dehydrated kiwifruit. Food and Bioproducts Processing, 100, 535-544. doi: 10.1016/j.fbp.2016.08.009.

Devi, Y., Thirumdas, R., Sarangapani, C., Deshmukh, R. R., & Annapure, U. S. (2017). Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control, 77, 187-191. doi: 10.1016/j.foodcont.2017.02.019

Dimitrakellis, P., & Gogolides, E. (2018). Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review. Advances in Colloid and Interface Science, 254, 1-21. doi: 10.1016/j.cis.2018.03.009

Fernánez-Jalao, I., Balderas, C., Sánchez-Moreno, C., & De Ancos, B. (2020). Impact of an in vitro dynamic gastrointestinal digestion on phenolic compunds and antioxidant capacity of apple treated by high-pressure processing. Innovative Food Science & Emerging Technologies, 66, 1-12. doi: 10.1016/j.ifset.2020.102486

Franck, M., Perreault, V., Suwal, S., Marciniak, A., Bazinet, L., & Doyen, A. (2019). High hydrostatic pressure-assisted enzymatic hydrolysis improved protein digestion of flaxseed protein isolate and generation of peptide with antioxidant activity. Food Research International, 115, 467-473. doi: 10.1016/j.foodres.2018.10.034

Gabrić, D., Barba, F., Roohinejad, S., Gharibzahedi, S. M. T., Radojčin, M., Putnik, P., & Kovačević, D. B. (2017). Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: a review. Journal of Food Process Engineering, 41(1), 1-14. doi: 10.1111/jfpe.12638

Gavahian, M., Chu, Y.-H., Khaneghah, A. M., Barba, F. J., Misra, N. N. (2018). A critical analysis of the cold plasma induced lipid oxidation in foods. Trends in Food Science and Technology, 77, 32-41. doi: 10.1016/j.tifs.2018.04.009

Golberg, A., Sack, M., Teissie, J., Pataro, G., Pliquett, U., Saulis, G., Stefan, T., Miklavcic, D., Vorobiev, E., & Frey, W. (2016). Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnology for Biofuels, 9(1), 1-22. doi: 10.1186/s13068-016-0508-z

Gómez, B., Munekata, P. E. S., Gavahian, M., Barba, F. J., Martí-Quijal, F. J.., Bolumar, T., Campagnol, P. C. B., Tomasevic, I., & Lorenzo, J. M. (2019). Application of pulsed electric fields in meat and fish processing industries: an overview. Food Research International, 123, 95-105. doi: 10.1016/j.foodres.2019.04.047

Han, L., Patil, S., Boehm, D., Milosavljevic, V., Cullen, P. J., & Bourke, P. (2015). Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology¸ 82(2), 450-458. doi: 10.1128/AEM.02660-15

Hanna, H., Denzi, A., Liberti, M., André, F. M., & Mir, L. M. (2017). Electropermeabilization of Inner and Outer Cell Membranes with Microsecond Pulsed Electric Fields: quantitative study with calcium ions. Scientific Reports, 7(1). doi: 10.1038/s41598-017-12960-w

Huang, H.-W., Hsu, C.-P., & Wang, C.-Y. (2020). Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis, 28(1), 1-13. doi: 10.1016/j.jfda.2019.10.002

Lee, H., Shahbaz, H. M., Ha, N., Kim, J. U., Lee, S. J., & Park, J. (2020). Development of ginseng powder using high hydrostatic pressure treatment combined with UV-TiO2 photocatalysis. The Korean Society of Ginseng, 44(1), 154-160. doi: 10.1016/j.jgr.2018.11.004

Lee, H., Song, K. B., Choi, E. J., Kim, H. K., Park, H. W., & Chun, H. H. (2019). Combined effects of high hydrostatic pressure treatment and red ginseng concentrate supplementation on the inactivation of foodborne pathogens and the quality of ready-to-use kimchi sauce. LWT – Food Science and Technology, 114(1), 1-9. doi: 10.1016/j.lwt.2019.108410

Lee K. H., Kim, H.-J., Woo, K. S., Jo, C., Kim, J.-K., Kim S. H., Park, H, Y., Oh, S.-K., & Kim, W. H. (2016). Evaluation of cold plasma treatments for improved microbial andphysicochemical qualities of brown rice. Food Science and Technology, 73, 442-447. doi: 10.1016/j.lwt.2016.06.055

Leong, S. Y., Burritt, D. J., & Oey, I. (2016). Evaluation of the anthocyanin release and health-promoting properties of Pinot Noir grape juices after pulsed electric fields. Food Chemistry, 196, 833-841. doi: 10.1016/j.foodchem.2015.10.025

Liao, X., Li, J., Muhammad, A. I., Suo, Y., Chen, S., Ye, D. L., & Ding, T. (2018). Application of a Dielectric Barrier Discharge Atmospheric Cold Plasma (Dbd-Acp) for Eshcerichia Coli Inactivation in Apple Juice. Food Science, 83(2), 801-408. doi: 10.1111/1750-3841.14045

Mai-Prochnow, A., Clauson, M., Hong, J., & Murphy, A. B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports. doi: 10.1038/srep38610

Mandal, R., Singh, A., & Singh, A. P. (2018). Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science and Technology, 80, 93-103. doi: 10.1016/j.tifs.2018.07.014

Marciniak, A., Suwal, S., Naderi, N., Pouliot, Y., & Doyen, A. (2018). Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science & Technology, 80(1), 187-198. doi: 10.1016/j.tifs.2018.08.013

Min, M. C., Roh, S. H., Niemira, B. A., Sites, J. ., Boyd, G., & Lacombe, A. (2016). Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. International Journal of Food Microbiology, 237, 114-120. doi: 10.1016/j.ijfoodmicro.2016.08.025

Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science and Technology, 55, 39-47. doi: 10.1016/j.tifs.2016.07.001

Misra, N. N., Yafav, B., Roopesh, M. S., & Jo, C. (2019). Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Comprehensive Reviews in Food Science and Food Safety, 18(1), 106-120. doi: 10.1111/1541-4337.12398

Mok, I., Nguyen, T. T. H., Kim, D. H., Lee, J. W., Lim, S., Jung, H., Lim, T., Pal, K., & Kim, D. (2020). Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure. Enzyme and Microbial Technology, 140(1), 1-9. doi: 10.1016/j.enzmictec.2020.109630

Oh, Y. A., Roh, S. H., & Min, S. C. (2016). Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocollids, 58, 150-159. doi: 10.1016/j.foodhyd.2016.02.022

Pankaj, S. H., Wan, Z., Colonna, W., & Keener, K. M. (2017). Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture, 97(12), 4016-4021. doi: 10.1002/jsfa.8268

Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7, 1-21. doi: 10.3390/foods7010004

Pasquali, F., Stratakos, A. C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., Mancusi, R., Manfreda, G., & Trevisani, M. (2016). Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control, 60, 552-559. doi: 10.1016/j.foodcont.2015.08.043

Pillet, F., Formosa-Dague, C., Baaziz, H., Dague, E., & Rols, M.-P. (2016). Cell wall as a target for bacteria inactivation by pulsed electric fields. Scientific Reports, 6(1), 1-8. doi: 10.1038/srep19778

Redondo, D., Venturini, M. E., Luengo, E., Raso, J., & Arias, E. (2018). Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innovative Food Science & Emerging Technologies, 45, 335-343. doi: 10.1016/j.ifset.2017.12.004

Ricci, A., Parpinello, G. P., & Versari, A. (2018). Recent Advances and Applications of Pulsed Electric Fields (PEF) to Improve Polyphenol Extraction and Color Release during Red Winemaking. Beverages, 4(1), 1-12. doi: 10.3390/beverages4010018

Sarangapani, C., Misra, N. N., Milosavljevic, V., Bourke, P., O’Regan, F., & Cullen, P. J. (2016). Pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering, 9, 225-232. doi: 10.1016/j.jwpe.2016.01.003

Sarangapani, C., O’Toole, G., Cullen, P. J., & Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies, 44, 235-241. doi: 10.1016/j.ifset.2017.02.012.

Shi, H., Heleji, K., Stroshine, R. L., Keener, K., & Jensen, J. L. (2017). Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol, 10, 1042-1052. doi: 10.1007/s11947-017-1873-8

Sitzmann, W., Vorobiev, E., & Lebovka, N. (2016). Applications of electricity and specifically pulsed electric fields in food processing: historical backgrounds. Innovative Food Science & Emerging Technologies, 37, 302-311. doi: 10.1016/j.ifset.2016.09.021

Soares, S. V., Picolli, I. R. A., & Casagrande, J. (2018). Pesquisa Bibliográfica. Pesquisa Bibliométrica, Artigo de Revisão e Ensaio Teórico em Administração e Contabilidade. Administração: Ensino e Pesquisa, 19(2), 308-339. doi: 10.13058/raep.2018.v19n2.970

Soliva-Fortuny, R., Vendrell-Pacheco, M., Martín-Belloso, O., & Elez-Martínez, P. (2016). Effect of pulsed electric fields on the antioxidant potential of apples stored at different temperatures. Postharvest Biology and Technology, 132, 195-201. doi: 10.1016/j.postharvbio.2017.03.015

Souza, V. R. D., Popovic, V., Bissonnette, S., Ros, I., Duizer, L., Warriner, K., & Koutchma, T. (2020). Quality changes in cold pressed juices after processing by high hydrostatic pressure, ultraviolet-c light and thermal treatment at commercial regimes. Innovative Food Science & Emerging Technologies, 64(1), 1-11. doi: 10.1016/j.ifset.2020.102398

Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P. (2016). Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies, 33, 225-233. doi: 10.1016/j.ifset.2015.12.022

Tao, Z., Sun, D.-W., Górecki, A., Blaszczak, W., Lamparski, G., Amarowicz, R. F., & Józef, J. (2016). A preliminary study about the influence of high hydrostatic pressure processing in parallel with oak chip maceration on the physicochemical and sensory properties of a young red wine. Food Chemistry, 194(1), 545-554. doi: 10.1016/j.foodchem.2015.07.041

Traffano-Schiffo, M. V., Tylewicz, U., Castro-Giraldez, M., Fito, P. J., Ragni, L., & Rosa, M. D. (2016). Effect of pulsed electric fields pre-treatment on mass transport during the osmotic dehydration of organic kiwifruit. Innovative Food Science & Emerging Technologies, 38, 243-251. doi: 10.1016/j.ifset.2016.10.011

Thirumdas, R., Saragapani, C., Ajinkya, M. T., Deshmukh, R. R., & Annapure, U. S. (2016). Influence of low pressure cold plasma on cooking and textural properties. Innovative Food Sciende and Emerging Technologies, 37, 53-60. doi: 10.1016/j.ifset.2016.08.009

Thirumdas, R., Trimukhe, A., Deshmukh, R. R., & Annapure, U. S. (2016). Functional and rheological properties of cold plasma treated ricestarch. Carbohydrate Polymers, 157, 1723-1731. doi: 10.1016/j.carbpol.2016.11.050

Wang, L.-H., Wang, M.-S., Zeng, X.-A., & Liu, Z.-W. (2016). Temperature-mediated variations in cellular membrane fatty acid composition of Staphylococcus aureus in resistance to pulsed electric fields. Biochimica et Biophysica Acta (Bba) - Biomembranes, 1858(8), 1791-1800. doi: 10.1016/j.bbamem.2016.05.003

Wu, L., Zhao, W., Yang, R., Yan, W., & Sun, Q. (2016). Aggregation of egg white proteins with pulsed electric fields and thermal processes. Journal of the Science of Food and Agriculture, 96(10), 3334-3341. doi: 10.1002/jsfa.7512

Xie, F., Zhang, W., Lan, X., Gong, S., Wu, J., & Wang, Z. (2018). Effects of high hydrostatic pressure and high pressure homogenization processing on characteristics of potato peel waste pectin. Carbohydrate Polymers, 196(1), 474-482. doi: 10.1016/j.carbpol.2018.05.061

Xu, L., Garner, A. L., Tao, B., & Keener, K. M. (2017). Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol, 10(10), 1778-1791. doi: 10.1007/s11947-017-1947-7

Zhang, Z.-H., Wang, L.-H., Zeng, X.-A., Han, Z., & Brennan, C. S. (2018). Non-thermal technologies and its current and future application in the food industry: a review. International Journal of Food Science & Technology, 54(1), 1-13. doi: 10.1111/ijfs.13903

Downloads

Publicado

26/02/2021

Como Citar

AGUIAR, M. M.; ALMEIDA, G. M. de; CAMARGO FILHO, W. L. de; ROSÁRIO, D. K. A. do; ARAÚJO, L. A.; NAVES, E. A. A. . Alta pressão hidrostática, campos elétricos pulsados e plasma frio na cadeia produtiva de alimentos: Princípios e aplicabilidade industrial. Research, Society and Development, [S. l.], v. 10, n. 2, p. e50310212670, 2021. DOI: 10.33448/rsd-v10i2.12670. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12670. Acesso em: 31 jul. 2024.

Edição

Seção

Artigos de Revisão