Da oliveira ao azeite de oliva: uma abordagem geral

Autores

DOI:

https://doi.org/10.33448/rsd-v10i3.13408

Palavras-chave:

Lipídeos; Ácidos graxos; Oxidação lipídica; Bagaço; Valor agregado.

Resumo

O objetivo deste estudo foi o de realizar uma abordagem sistemática de literatura sobre as olivas, extração, caracterização e parâmetros de identidade e de qualidade dos azeites, bem como as alternativas tecnológicas de aproveitamento dos resíduos. O azeite de oliva é o óleo comestível extraído dos frutos maduros da oliveira (Olea europaea L.). As árvores são cultivadas na Região Mediterrânea há vários séculos e existem milhares de cultivares que se diferem pelo peso, tamanho e características químicas dos frutos. Atualmente, o azeite de oliva é produzido em todo o mundo e o plantio de olivas foi recentemente introduzido na cidade de Diamantina, Minas Gerais. O extrato etéreo é composto, em maior parte, por ácido oleico e por menores frações de compostos fenólicos, fitoesteróis e pigmentos, substâncias antioxidantes e bioativas que promovem a estabilidade oxidativa do óleo e possuem efeitos benéficos à saúde humana. O principal método de extração do azeite de oliva é composto basicamente por trituração, prensagem e centrifugação, gerando resíduos que podem ser reaproveitados para recuperação de compostos ou geração de novos produtos na indústria alimentícia. Após extraído, o azeite é submetido a diversas análises físicas e químicas para definição do padrão de identidade e qualidade, de acordo com as normas internacionais. As principais características que definem a qualidade do azeite de oliva são a acidez titulável total, índice de peróxidos, extinção específica no ultravioleta, cor instrumental e perfil de ácidos graxos. 

Referências

Ahmad-Qasem, M. H., Barrajón-Catalán, E., Micol, V., Mulet, A. & García-Pérez, J. V. (2013). Influence of freezing and dehydration of olive leaves (var. Serrana) on extract composition and antioxidant potential. Food Research International, 50(1), 189-196. DOI: https://doi.org/10.1016/j.foodres.2012.10.028.

Almeida, D. S., Oliveira, D. F., Souza, A. S., Anjos, M. J. & Lopes, R. T. (2015). Oil classification using x-ray scattering and principal component analysis. Anais do 2015 International Nuclear Atlantic Conference, São Paulo, Brasil.

Almeida, C. A. S., Baggio, S. R., Mariutti, L. R. B. & Bragagnolo, N. (2020). One-step rapid extraction of phytosterols from vegetable oils. Food Research International, 130, 108891. DOI: https://doi.org/10.1016/j.foodres.2019.108891.

Annab, H., Fiol, N., Villaescusa, I. & Essamri, A. (2019). A proposal for the sustainable treatment and valorization of olive mill wastes. Journal of Environmental Chemical Engineering, 7(1), e102803. DOI: https://doi.org/10.1016/j.jece.2018.11.047.

Antónia-Nunes, M., Costa, A. S. G., Bessada, S.; Santos, J.; Puga, H.; Alves, R. C.; Freitas, V. & Oliveira, M. B. P. P. (2018). Olive pomace as a valuable source of bioactive compounds: a study regarding its lipid and water-soluble components. Science of the Total Environment, 644, 229-236. DOI: https://doi.org/10.1016/j.scitotenv.2018.06.350.

Araújo, J. M. A. (2019). Química de Alimentos: teoria e prática (7a ed.). Viçosa: Editora UFV.

Ballus, C. A., Meinhart, A. D., Campos Jr, F. A. de S., Silva, L. F. de O. da., Oliveira, A. F. de. & Godoy, H. T. (2014). A quantitative study on the phenolic compound, tocopherol and fatty acid contents of monovarietal virgin olive oils produced in the southeast region of Brazil. Food Research International, 62, 74-83. DOI: https://doi.org/10.1016/j.foodres.2014.02.040.

Bakalis, S., Valdramidis, V. P., Argyropoulos, D., Ahrne, L., Chen, J., Cullen, P. J., Cummins, E., Datta, A. K., Emmanouilidis, C., Foster, T., Fryer, P. J., Gouseti, O., Hospido, A., Knoerzer, K., LeBail, A., Marangoni, A. G., Rao, P., Schüler, O. K., Taoukis, P., Xanthakis, E. & Van Impe, J. F. M. (2020). Perspectives from CO+RE: how COVID-19 changed our food systems and food security paradigms. Current Research in Food Science, 3, 166-172. DOI: https://doi.org/10.1016/j.crfs.2020.05.003.

Basumatary, B., Bhattacharya, S. & Das, A. B. (2020). Olive (Eleagnus latifolia) pulp and leather: characterization after thermal treatment ant interrelations among quality attributes. Journal of Food Engineering, 278, 109948. DOI: https://doi.org/10.1016/j.jfoodeng.2020.109948.

Borges, T. H., Pereira, J. A., Cabrera-Vique, C., Lara, L., Oliveira, A. F. & Seiquer, I. (2017). Characterization of Arbequina virgin olive oils produced in different regions of Brazil and Spain: physicochemical properties, oxidative stability and fatty acid profile. Food Chemistry, 215, 545-462. DOI: https://doi.org/10.1016/j.foodchem.2016.07.162.

Bracale, R. & Vaccaro, C. M. (2020). Changes in food choice following restrictive measures due to Covid-19. Nutrition, Metabolism and Cardiovascular Diseases, 30, 1423-1426. DOI: https://doi.org/10.1016/j.numecd.2020.05.027.

Bruscatto, M. H., Zambiazi, R. C., Crizel-Cardoso, M., Piatnicki, C. M. S., Mendonça, C. R. B., Dutra, F. L. G. & Coutinho, E. F. (2017). Chemical characterization and oxidative stability of olive oils extracted from olive trees of Southern Brazil. Pesquisa Agropecuária Brasileira, 52(12), 1231-1240. DOI: https://doi.org/10.1590/s0100-204x2017001200012.

Cardoso, L. G. V., Barcelos, M. de F. P., Oliveira, F. de., Pereira, J. de A. R., Abreu, W. C. de., Pimentel, F. de A., Cardoso, M. das. & Pereira, M. C. de A. (2010). Physicochemical characteristics and fatty acids profile of olive oils from different varieties of olive tree in southern Minas Gerais – Brazil. Semina: Ciências Agrárias, 31(1), 127-136. DOI: http://dx.doi.org/10.5433/1679-0359.2010v31n1p127.

Cavaca, L. A. S., López-Coca, I. M., Silvero, G. & Afonso, C. A. M. (2020). The olive-tree leaves as a source of high-added value molecules: Oleuropein. Studies in Natural Products Chemistry, 64, 131–180. DOI: 10.1016/B978-0-12-817903-1.00005-X.

Cazzoletti, L., Zanolin, M. E., Spelta, F., Bono, R., Chamitava, L., Garcia-Larsen, V., Mattioli, V., Pirina, P. & Ferrari, M. (2019). Dietary fats, olive oil and respiratory diseases in Italian adults: a population-based study. Clinical and Experimental Allergy, 49(6), 799-807. DOI: https://doi.org/10.1111/cea.13352.

Cheng, Z., Zhan, M., Yang, Z. & Zumstein, K. (2017). The major qualitative characteristics of olive (Olea europaea L.) cultivated in southwest China. Frontiers in Plant Science, 8, 559. DOI: 10.3389/fpls.2017.00559.

Ciafardini, G. & Zullo, B. A. (2018). Virgin olive oil yeasts: A review. Food Microbiology, 70, 245-253. DOI: 10.1016/j.fm.2017.10.010.

Damodaran, S. & Parkin, K. L. (2017). Fennema’s Food Chemistry (5a ed.). Flórida: CRC Press.

Difonzo, G., Troili, M., Squeo, G., Pasqualone, A. & Caponio, F. (2020). Functional compounds from olive pomace to obtain high-added value foods. Journal of the Science of Food and Agriculture, e10478. DOI: https://doi.org/10.1002/jsfa.10478.

Ebiad, R. & Abu-Quaoud, H. (2014). Morphological and biological characterization of three olive “Olea europaea L.” cultivars in Palestine. Jordan Journal of Agricultural Sciences, 10(1), 130-143.

Fernandes, J., Fialho, M., Santos, R., Peixoto-Plácido, C., Madeira, T., Sousa-Santos, N., Virgolino, A., Santos, O. & Carneiro, A. V. (2020). Is olive oil good for you? A systematic review and meta-analysis on anti-inflamatory benefits from regular diet intake. Nutrition, 69, 110559. DOI: 10.1016/j.nut.2019.110559.

Foscolou, A., Critselis, E. & Panagiotakos, D. (2018). Olive oil consumption and human health: A narrative review. Maturitas, 118, 60-66. DOI: 10.1016/j.maturitas.2018.10.013.

Freire, P. C. M., Mancini-Filho, J. & Ferreira, A. P. de. C. (2013). Major physical and chemical changes in oils and fats used for deep frying: regulation and effects on health. Revista de Nutrição, 26(3), 353-358. DOI: http://dx.doi.org/10.1590/S1415-52732013000300010.

Gharbi, I. & Hammami, M. (2019). Olive (Olea europaea L.) Oil (Cap. 20, pp. 405-417). Switzerland: Springer Nature. DOI: 10.1007/978-3-030-12473-1_20.

Gavahian, M., Khaneghah, A. M., Lorenzo, J. M., Munekata, P. E. S., Garcia-Mantrana, I., Collado, M. C., Meléndez-Martínez, A. J. & Baraba, F. J. (2019). Health benefits of olive oil and its components: impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends in Food Science and Technology, 88, 220-227. DOI: https://doi.org/10.1016/j.tifs.2019.03.008.

Giacometti, J., Milin, C., Giacometti, F. & Ciganj, Z. (2018). Characterization of monovarietal olive oils obtained from Croatian cvs. Drobnica and Buza during the ripening period. Foods, 7(11), e188. DOI: 10.3390/foods7110188.

Gonçalves, T. R., Rosa, L. N., Março, P. H. & Silva, L. F. O. da. (2020). Evaluation of Brazilian monovarietal extra virgin olive oils using digital images and independent component analysis. Journal of the Brazilian Chemical Society, 31(9), 1955-1963. DOI: 10.21577/0103-5053.20200083.

Guasch-Ferré, L. G., Liu, G., Li, Y., Sampson, L., Manson, J. E., Salas-Salvadó, J., Martínez-González, M. A., Stampfer, M. J., Willett, W. C., Sun, Q. & Hu, F. B. (2020). Olive oil consumption and cardiovascular risks in U.S adults. Journal of the American College of Cardiology, 75(15), 1729-1739. DOI: 10.1016/j.jacc.2020.02.036.

Houshia, O. J., AbuEid, M., Zais, O.; Shqair, H., Zaid, M., Nashariti, W., Noor, B. & Al-Rimwai, F. (2019). Alteration of Nabali Baladi Extra Virgin Olive Oil (EVOO) chemical parameters as a function of air sunlight exposure. Oilseeds & Fats Crops and Lipids, 26(38), 1-10. DOI: https://doi.org/10.1051/ocl/2019036.

Huk, T. T. S., Scapinello, J., Croce, D. M., Kihn, F., Bohn, A. & Dal, M. J. (2015). Determinação da composição química e potencial antioxidante do azeite de oliva produzido na região oeste de Santa Catarina. Anais do XX Congresso Brasileiro de Engenharia Química, 1(2). DOI: 10.5151/chemeng-cobeq2014-1051-21350-172088.

Ilarioni, L. & Proietti, P. (2014). Olive tree cultivars. (Cap. 5, pp. 59-67). Reino Unido: Wiley. DOI: https://doi.org/10.1002/9781118460412.ch5.

IOC - International Olive Council. (2000). World Catalogue of Olive Varieties. Espanha: IOC.

IOC - International Olive Council. (2003). Codex Standard for Olive Oils and Olive Pomace Oils - Codex Stan 33-1981 (2a rev.). Codex Alimentarius. Roma, Itália.

Kalogianni, E. P., Georgiou, D. & Hasanov, J. H. (2019). Olive oil processing: current knowledge, literature gaps, and future perspectives. Journal of the American Oil Chemists' Society, 96(5), 481-507. DOI: https://doi.org/10.1002/aocs.12207.

Khor, Y. P., Sim, B. I., Abas, F., Lai, O. M., Wang, Y., Wang, Y. & Tan, C. P. (2019). Quality profile determination of palm olein: potencial markers for the detection of recycled cooking oils. International Journal of Food Properties, 22(1), 1172-1182. DOI: https://doi.org/10.1080/10942912.2019.1634098.

Lama-Muñoz, A., Rodríguez-Gutiérrez, G., Rubio-Senent, F. & Fernández-Bolaños, J. (2012). Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocolloids, 28(1), 92–104. DOI: https://doi.org/10.1016/j.foodhyd.2011.11.008.

Li, L., Deng, Y., Li, Z., Zhang, Z., Gao, X., Geng, X. & Zhang, D. (2020). Resourcing potential of olive oil pomace. Thermal Science, 24(3A), 1761-1768. DOI: 10.2298/TSCI190603049L.

Lioupi, A., Nenadis, N. & Theodoridis, G. (2020). Virgin olive oil metabolomics: A review. Journal of Chromatography, 1150, 122161. DOI: https://doi.org/10.1016/j.jchromb.2020.122161.

Mansouri, F., Moumen, A. B., Aazza, S., Belhaj, K., Fauconnier, M. L., Sindic, M., Caid, S. & Elamrani, A. (2019). Quality and chemical profiles of virgin olive oils of three European cultivars suitable for super-high-density planting conditions in eastern Morocco. Materials Today: Proceedings, 13(3), 998–1007. DOI: https://doi.org/10.1016/j.matpr.2019.04.065.

Mariotti, M. & Peri, C. (2014). The composition and nutritional properties of extra‐virgin olive oil (Cap. 3, pp. 21-34). Reino Unido: Wiley. DOI: https://doi.org/10.1002/9781118460412.ch3.

Martins, L. M., Cruz, M. do C., M., Oliveira, A. F. de., Fagundes, C. P. & Santos, J. B. dos. (2015). Crescimento inicial de mudas de oliveira em competição com plantas daninhas. Revista Agrarian, 8(28), 124-132.

Medeiros, R. M. L., Villa, F., Silva, D. F. da. & Filho, L. R. C. (2016). Destination and reuse of by products from olive oil extraction. Scientia Agraria Paranaensis, 15(2), 100-108. DOI: https://doi.org/10.18188/sap.v15i2.11905.

Mello, L. D. & Pinheiro, M. F. (2012). Physico-chemical characterization of monovarietal olive oil and olive leaves of cultivars introduced in the RS State, Brazil. Alimentos e Nutrição, 23(4), 537-548.

Methamem, S., Gouta, H., Mougou, A., Mansour, M. & Boujnah, D. (2015). Yield, fruit oil content of some olive trees (Olea europaea L.) field-grown in Tunisia. Annals of Biological Research, 6(9), 64-71.

Moreira, R. A., Fernandes, D. R., Cruz, M. do C. M. da., Lima, J. E. & Oliveira, A. F. de. (2016). Water restriction, girdling and paclobutrazol on flowering and production of olive cultivars. Scientia Horticulturae, 200(8), 197-204. DOI: https://doi.org/10.1016/j.scienta.2016.01.014.

Muzzalupo, I. (2012). Olive germplasm – Italian Catalogue of Olive Varieties. Croácia: InTech.

Nazzaro, F., Fratianni, F., Cozzolino, R., Martignetti, A., Malorni, L., De Feo, V., Cruz, A. G. & d’Acierno, A. (2019). Antibacterial activity of three extra virgin olive oils of the Campania Region, Southern Italy, related to their polyphenol content and composition. Microorganisms, 7(9), 1-10. DOI: 10.3390/microorganisms7090321.

Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M. & Agha, R. (2020). The socio-economic implications of the coronavirus pandemic (COVID-19): a review. International Journal of Surgery, 78, 185-193. DOI: 10.1016/j.ijsu.2020.04.018.

Osawa, C. C.; Gonçalves, L. G. & Ragazzi, S. (2006). Potentiometric titration applied to free fatty acid determination of edible oils and fats. Química Nova, 29(3), 593-599. DOI: https://doi.org/10.1590/S0100-40422006000300031.

Papastergiadis, A., Mubiru, E., Langenhove, H. V. & Meulenaer, B. de. (2012). Malondialdehyde measurement in oxidized foods: evaluation of the spectrophotometric thiobarbituric acid reactive substances (TBARS) test in various foods. Journal of Agricultural and Food Chemistry, 60(38), 9589-9594, 2012. DOI: 10.1021/jf302451c.

Ramalho, V. C. & Jorge, N. (2006). Antioxidants used in oils, fats and fatty foods. Química Nova, 29(4), 755-760. DOI: https://doi.org/10.1590/S0100-40422006000400023.

Reboredo-Rodríquez, P., González-Barreiro, C., Cancho-Grande, B. & Simal-Gándara, J. (2014). Quality of extra virgin olive oils produced in an emerging olive growing area in north-western Spain. Food Chemistry, 164, 418-426. DOI: https://doi.org/10.1016/j.foodchem.2014.05.043.

Rios, H. C. S., Pereira, I. R. O. & Abreu, E. S. (2013). Avaliação da oxidação de óleos gorduras e azeites comestíveis em processo de fritura. Revista Ciência e Saúde, 6(2), 118-126. DOI: https://doi.org/10.15448/1983-652X.2013.2.13143.

Rodrigues, F., Pimentel, F. B. & Oliveira, M. B. P. P. (2015). Olive by-products: challenge application in cosmetic industry. Industrial crops and products, 70, 116-124. DOI: https://doi.org/10.1016/j.indcrop.2015.03.027.

Rodrigues, N., Casal, S., Peres, A. M.; Baptista, P. & Pereira, A. A. (2020). Seeking for sensory differenciated olive oils? The urge to preserve old autochtonous olive cultivars. Food Research International, 128, 108759. DOI: https://doi.org/10.1016/j.foodres.2019.108759.

Román, G. C., Jackson, R. E., Reis, J., Román, A. N.; Toledo, J. B. & Toledo, E. (2019). Extra-virgin olive oil for potential prevention of Alzheimer disease. Revue Neurologique, 175(10), 705-723. DOI: 10.1016/j.neurol.2019.07.017.

Rotich, V., Al Riza, D. F., Giametta, F., Suzuki, T., Ogawa, Y. & Kondo, N. (2020). Thermal oxidation assessment of Italian extra virgin olive oil using an UltraViolet (UV) induced fluorescence imaging system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 237, 118373. DOI: https://doi.org/10.1016/j.saa.2020.118373.

Scherer, R. & Böckel, W. J. (2018). Avaliação dos teores de ácidos graxos presentes em azeites de oliva extra virgem comercializados no vale do Taquari. Revista Destaques Acadêmicos, 10(4), 246-259. DOI: http://dx.doi.org/10.22410/issn.2176-3070.v10i4a2018.2041.

Seçmeler, O. & Galanakis, C. M. (2019). Olive fruit and olive oil (Cap. 8, pp. 193-220). Cambridge: Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-12-814887-7.00008-3.

Silva, F. A. M., Borges, M. F. M. & Ferreira, M. A. (1999). Methods for the evaluation of the degree of lipid oxidation and the antioxidant activity. Química Nova, 1(22), 94-103. DOI: https://doi.org/10.1590/S0100-40421999000100016.

Silva, L. F. de O. da., Oliveira, A. F. de., Pio, R. & Zambon, C. R. (2012). Agronomic and carpometric characterization of olive tree cultivars. Pesquisa Agropecuária Tropical, 42(3), 350-356. DOI: https://doi.org/10.1590/S1983-40632012000300012.

Spika, M. J., Zanetic, M., Kraljic, K., Paskovic, I. & Skevin, D. (2018). Changes in olive fruit characteristics and oil accumulation in “Oblica” and “Leccino” during ripening. Acta Horticulturae, 1199(86), 543-548. DOI: 10.17660/ActaHortic.2018.1199.86.

Taluri, S. S., Jafari, S. M. & Bahrami, A. (2019). Evaluation of changes in the quality of extraction oil from olive fruits stored under different temperatures and time intervals. Scientific Reports, 9, 19688. DOI: 10.1038/s41598-019-54088-z.

Uncu, O. & Ozen, B. (2020). Importance of some minor compounds in olive oil authenticity and quality. Trends in Food Science and Technology, 100, 164-176. DOI: https://doi.org/10.1016/j.tifs.2020.04.013.

Veneziani, G., Novelli, E., Esposto, S., Taticchi, A. & Servili, M. (2017). Applications of recovered bioactive compounds in food products (Cap. 11, pp. 231-253). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-805314-0.00011-X.

Vossen, P. (2013). Growing olive for oil (Cap. 2, pp. 19-56). New York: Springer. DOI: 10.1007/978-1-4614-7777-8_2.

Zicker, M. C., Craig, A. P., Ramiro, D. de O., Franca, A. S., Labanca, R. A. & Ferreira, A. V. M. (2016). Quantitative analysis of acidity level in virgin coconut oils by Fourier transform infrared spectroscopy and chemometrics. European Journal of Lipid Science and Technology, 118(9), 1350-1357. DOI: https://doi.org/10.1002/ejlt.201500407.

Wang, N., Ma, T., Yu, X., Xu, L. & Zhang, R. (2016). Determination of peroxide values of edible oils by ultraviolet spectrometric method. Food Analytical Methods, 9(5), 1412-1417. DOI: http://dx.doi.org/10.1007/s12161-015-0322-4.

Wiesman, Z. Desert olive oil cultivation – Advanced Biotechnology. (2009). Cambridge: Academic Press.

Downloads

Publicado

17/03/2021

Como Citar

SILVA, B. S.; SCHMIELE, M. Da oliveira ao azeite de oliva: uma abordagem geral. Research, Society and Development, [S. l.], v. 10, n. 3, p. e32210313408, 2021. DOI: 10.33448/rsd-v10i3.13408. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13408. Acesso em: 22 nov. 2024.

Edição

Seção

Artigos de Revisão