Condicionantes para cultivo de soja tolerante ao déficit hídrico no Semiárido Nordestino
DOI:
https://doi.org/10.33448/rsd-v10i4.13980Palavras-chave:
Mudanças climáticas; Produção de sequeiro; Segurança alimentar.Resumo
A soja é uma cultura de grande expressividade mundial e o Brasil atualmente é o maior produtor e exportador dessa cultura, com potencial territorial para expansão do seu cultivo. Diante das previsões apontadas pelas principais instituições governamentais (mudanças climáticas, aumento populacional e a escassez dos recursos hídricos), garantir a segurança alimentar de uma população crescente exigirá estratégias e melhorias que visem o aumento da produtividade. Objetivou-se identificar atributos do meio e das plantas de soja que as tornem tolerantes ao déficit hídrico e que possibilitem o incremento da produção em ambientes semi-áridos do nordeste do Brasil. Tendo em vista que a maioria dos grandes países produtores de soja são compostos em sua maior parte de territórios áridos e semiáridos, e decorrente às atuais mudanças climáticas, existe uma forte tendência de que novas áreas possam estar se tornando áridas e semiáridas. As soluções para enfrentar o estresse decorrente do déficit hídrico imposta à soja em ambientes áridos e semiáridos precisam estar relacionados ao melhoramento fisiológico, morfológico e genético que auxiliem no enfrentamento desse estresse. Aumento das raízes, maior eficiência na fixação de nitrogênio, controle na condutância estomática e o uso eficiente da água por parte da planta são alguns dos desafios que a engenharia genética deverá responder para o desenvolvimento de uma variedade de soja tolerante ao déficit hídrico. Mais estudos que visem encontrar respostas capazes de solucionar o déficit hídrico na soja devem ser conduzidos.
Referências
Adesemoye, A. O. & Kloepper, J. W. (2009). Plant-microbes interactions in enhanced fertilizer use efficiency. Applied Microbiology and Biotechnology, 85, 1–12. DOI 10.1007/s00253-009-2196-0
Araujo, F. F. (2008). Inoculação de sementes com Bacillus subtilis, formulado com farinha de ostras e desenvolvimento de milho, soja e algodão. Ciência e Agrotecnologia, 32(2), 456-462. 10.1590/S1413-70542008000200017.
Battisti, R., Sentelhas, P. C., Boote K. J., Câmara, G. M. S., Farias, J. R. B. & Basso, C. J. (2017). Assessment of soybean yield with altered water-related genetic improvement traits under climate change in Southern Brazil. European Journal of Agronomy, 83, 1-14. https://doi.org/10.1016/j.eja.2016.11.004
Benjamin, J. G. & Nielsen, D. C. (2006). Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Research, 97(2/3), 248-253. 10.1016/J.FCR.2005.10.005
Bittencourt, F., Mantovani, E. C., Sediyama, G. C. & Santos, N. T. (2018). Determinação de funções de produtividade de algodão e soja em cultivo sequeiro no extremo oeste da Bahia. Revista Agrogeoambiental, 10(1), 67-81. http://dx.doi.org/10.18406/2316-1817v10n120181089
Catuchi, T. A., Vítolo, H. F., Bertolli, S. C. & Souza, G. M. (2011). Tolerance to water deficiency between two soybean cultivars: transgenic versus conventional. Ciência Rural, 31(3), 373-378. https://doi.org/10.1590/S0103-84782011000300002
Catuchi, T. A., Guidorizzi, F. V. C., Guidorizi, K. A., Barbosa, A. M. & Souza, G. M. (2012). Respostas fisiológicas de cultivares de soja à adubação potássica sob diferentes regimes hídricos. Pesquisa Agropecuária Brasileira, 47(4), 519-527. https://doi.org/10.1590/S0100-204X2012000400007.
Choudhary, D. K., Sharma, K. P. & Gaur, R. K. (2011). Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett, 33, 1905–1910. 10.1007/s10529-011-0662-0
Chilundo, M., Joel, A. Wesström, I., Brito, R. & Messing, I. (2018). Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil. Agricultural Water Management, 199, 120-137. https://doi.org/10.1016/j.agwat.2017.12.020
Conab. (2020). Safra Brasileira de Grãos. Website da Companhia Nacional de Abastecimento - CONAB. https://www.conab.gov.br/info-agro/safras/graos
Cortes, P. M. & Sinclair, T. R. (1986). Water Relations of Field-Grown Soybean under Drought. Crop Science, 26(5), 993-998. https://doi.org/10.2135/cropsci1986.0011183X002600050031x
Desa (2017) - United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision. Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248.
Devi, K. N., Singh, L. N. K., Devi, T. S., Devi, H. N.; Singh, T. B.; Singh, K. N. & Singh, W. N. (2012). Response of Soybean [Glycine max (L.) Merrill] to Sources and Levels of Phosphorus. Journal of Agricultural Science, 4(6), 44-53. 10.5539/jas.v4n6p44
Dodd, I. C., Zinovkina N. Y., Safronova, V. I. & Belimov, A. A. (2010). Rhizobacterial mediation of plant hormone status. Annal of Applied Biology, 157, 361-379. 10.1111/j.1744-7348.2010.00439.x
Embrapa. (2019). História da Soja. Website da Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA. https://bit.ly/2I8DOkt
Fao. (2019). ‘Climatesmart’ agriculture, policies, practices and finances for food security, adaptation andmitigation. Website da Organização para a Alimentação e Agriculturahttps – FAO. //bit.ly/2X4AETh.
Fao. (2011). The state of the world’s land and water resources for food and agriculture (SOLAW) – Managing systems at risk. FAO, Rome and Earthscan.
He, J., Du, Y., Wang, T., Turner, N. C., Yang, R., Xi, Y. J. Y., Zhang, C., Cui, T. & Fang, X. Li, F. (2017). Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drough. Agricultural Water Management, 179, 236-245. https://doi.org/10.1016/j.agwat.2016.07.008
Jongdee, B., Fukai, S. & Cooper, M. (2002). Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Research, 76, 153-163. https://doi.org/10.1016/S0378-4290(02)00036-9
Jordan, W. R., Dugas, W. A. & Shouse, P. J. (1983). Strategies for crop improvement for drought prone regions. Agricultural Water Management, 7, 281-299. https://doi.org/10.1016/0378-3774(83)90090-2
Lemos, J. & Santiago, D. (2020). Instabilidade Temporal na Produção Agrícola Familiar de Sequeiro no Semiárido do Nordeste Brasileiro. Desenvolvimento Em Questão, 18(50), 186-200. https://doi.org/10.21527/2237-6453.2020.50.186-200
Kim, H., Cho, H. S., Pak, J. H., Kwon, T., Lee, J., Kim, D., Lee, D. H., Kim, C. & Chung, Y. (2018). Confirmation of Drought Tolerance of Ectopically Expressed AtABF3 Gene in Soybean. Molecular and Cellular Biology, 41, 413-422. 10.14348/molcells.2018.2254
Ku, B. Y., Au-Yeung, W., Yung, Y., Li, M., Wen, C., Liu, X. & Lam, H. (2013). Drought stress and tolerance in soybean. In: Board, J.E. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. 10, 209-237. 10.5772/52945
Leite, M. A., Dias, F. A., Hernandes, F. B. T. & Oliveira J. N. (2019). Usos múltiplos da água. In: Dornfeld, C. B., Talamoni, A.C.B., Queiroz, T.V. O Jogo digital na sala de aula - Água, Ação E Reflexão: elaboração de jogo digital para a Educação Básica. 4, 44-57.
Manavalan, L. P., Guttikonda, S. K., Tran, L. P. & Nguyen H. T. (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant and Cell Physiology, 50(7), 1260-1276. https://doi.org/10.1093/pcp/pcp082
MDIC. (2020). Ministério do Desenvolvimento, Indústria e Comércio Exterior - Comex Vis/MDIC. Website do MDIC. http://comexstat.mdic.gov.br/pt/comex-vis.
Mondani, F., Khani, K., Honarmand, S. J. & Saeidi, M. (2019). Evaluating effects of plant growth-promoting rhizobacteria on the radiation use efficiency and yield of soybean (Glycine max) under water deficit stress condition. Agricultural Water Management, 213, 707-713. https://doi.org/10.1016/j.agwat.2018.11.004
Morison, J. I. L., Baker, N. R., Mullineaux, P. M. & Davies, W. J. (2008). Improving water use in crop production. Philosophical Transactions of the Royal Society Biological Sciences, 363, 639-658. 10.1098/rstb.2007.2175
Moura, A. R., Nogueira, R. J. M. C., Silva, J. A. A. & Lima, T. V. (2016). Water relations and organic solutes in young plants of Jatropha curcas L. under diferente water regimes. Ciência Florestal, 26(2), 345-354.
Mutava, R. N., Prince, S. J. K., Syed, N. H., Song, L., Valliyodan, B., Chen, W. & Nguyen, H. T. (2015). Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress. Plant Physiology and Biochemistry, 86, 109-120. https://doi.org/10.1016/j.plaphy.2014.11.0104
NEPOMUCENO, A. L. et al. Tolerância à seca em plantas. Biotecnologia Ciência e Desenvolvimento, 23, 12-18, 2001.
Oya, C., Schaefer, F., Skalidou, D., McCosker, C., & Langer, L. (2017). Effects of certification schemes for agricultural production on socio‐economic outcomes in low‐and middle‐income countries: a systematic review. Campbell Systematic Reviews, 13(1), 1-346. 10.4073/csr.2017.3.
Pandey, R. K., Herrera, W. A. T. & Pendleton, J. W. (1984). Drought response of grain legumes under irrigation gradient. III. Plant growth. Agronomy Journal, 76, 557-560. https://doi.org/10.2134/agronj1984.00021962007600040011x
Passioura, J. B. (1983). Roots and drought resistance. Agricultural Water Management, 7, 265-280. https://doi.org/10.1016/0378-3774(83)90089-6
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM
Prado, R. M. (2018). Nutrição de plantas. UNESP.
Prado, E. E., Hiromoto, D. M., Godinho, V. P. C., Utumi, M. M. & Ramalho, A. R. (2001). Adaptability and stability of soybean cultivars in five planting seasons in Rondônia cerrado. Pesquisa Agropecuária Brasileira, 36(4), 625-635. https://doi.org/10.1590/S0100-204X2001000400005
Purcell, L. C. & King, C. A. (1996). Drought and nitrogen source effects on nitrogen nutrition, seed growth, and yield in soybean. Journal of Plant Nutrition, 19, 969-993. https://doi.org/10.1080/01904169609365173
Ragab, R. & Prudhomme, C. (2002). Climate Change and Water Resources Management in Arid and Semi-arid Regions: Prospective and Challenges for the 21st Century. Biosystems Engineering, 81(1), 3-34. https://doi.org/10.1006/bioe.2001.0013
Ramos, L. A., Nolla, A., Korndörfer, G. H., Pereira, H. S. & Camargo, M. S. (2006). Reactivity of soil acidity correctives and conditioners in lysimeters. Revista Brasileira de Ciência do Solo, 30, 849-857. https://doi.org/10.1590/S0100-06832006000500011
Ruzzi, M. & Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae, 196, 124-134. https://doi.org/10.1016/j.scienta.2015.08.042
Sadok, W. & Sinclair, T. R. (2011). Crops Yield Increase Under Water-Limited Conditions: Review of Recent Physiological Advances for Soybean Genetic Improvement. Advances in Agronomy, 113, 325-349. https://doi.org/10.1016/B978-0-12-386473-4.00007-5
Rouhallah, S., Masoud, A., Abbas, S. & Khalil, T. (2010). Pyoverdine production in Pseudomonas fluorescens UTPF5 and its association with suppression of common bean damping off caused by Rhizoctonia solani (Kuhn). Journal of Plant Protection Research, 50, 72-78.
Sharifi, R. & Ryu, C. M. (2018). Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Annals of Botany, 122(3), 349-358. 10.1093/aob/mcy108
Sinclair, T. R. & Muchow, R. C. (2001). System analysis of plant traits to increase grain yield on limited water supplies. Agronomy Journal, 93(2), 263-270. https://doi.org/10.2134/agronj2001.932263x
Sinclair, T. R., Purcell, L. C., King, C. A., Sneller, C. H., Chen, P. & Vadez, V. (2017). Drought tolerance and yield increase of soybean resulting from improved symbiotic N2 fixation. Field Crops Research, 101, 68-71. https://doi.org/10.1016/j.fcr.2006.09.010
Sinclair, T. R. Messina, C. D. Beatty, A. & Samples, M. (2010). Assessment across the United States of the benefits of altered soybean drought traits. Agronomy Journal, 102(2), 475-482. https://doi.org/10.2134/agronj2009.0195
Sivakumar, M. V. K., Das, H. P. & Brunini, O. (2005). Impacts of Present and Future Climate Variability and Change on Agriculture and Forestry in the Arid and Semi-Arid Tropics. Climatic Change, 70(1/2), 31-72. https://doi.org/10.1007/s10584-005-5937-9
Soratto, R. P. & Crusciol, C. A. C. (2008). Nutrition and grain yield of black oat as affected by surface application of lime and phosphogypsum at the establishment of no-tillage system. Revista Brasileira de Ciência do Solo, 32, 715-725. https://doi.org/10.1590/S0100-06832008000200026.
Souza, G. M., Catuchi, T. A., Bertolli, S. C. & Soratto, R. P. (2013). Soybean under Water Deficit: Physiological and Yield Responses. In: Board, J. E. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. 13, 273-298. 10.5772/54269
Sponchiado, B. N., White, J. W., Castillo, J. A. & Jones, P. G. (1980). Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Experimental Agriculture, 25(2), 249-257. https://doi.org/10.1017/S0014479700016756
Turner, N. C. (1986). Adaptation to water deficits: a changing perspective. Australian Journal Plant Physiology, 13, 175-190. https://doi.org/10.1071/PP9860175
Usda. (2020). Foreign Agricultural Service. Website do United States Department of Agriculture. https://bit.ly/2I9JQS1.
Vadez, V., Kholová, J., Yadav, R. S. & Hash, C. T. (2013). Small temporal differences in water uptake among varieties of pearl millet (Pennisetum glaucum (L.) R. Br.) are critical for grain yield under terminal drought. Plant Soil, 371, 447–462. https://doi.org/10.1007/s11104-013-1706-0
Verma, V., Ravindran, P. & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(86), 1-10. https://doi.org/10.1186/s12870-016-0771-y
Viana, J. S., Gonçalves, E. P., Silva, A. C. & Matos, V. P. (2013). Climatic conditions and production of soybean in northeastern Brazil. In: Board, J. E. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. 18, 377-392. 10.5772/52184
Vitti, G. C.; Lima, E. & Cicarone, F. (2006). Nutrição mineral de plantas. Sociedade Brasileira de Ciência do Solo.
Wang, W. X., Vinocur, B. & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14. https://doi.org/10.1007/s00425-003-1105-5
Waraich, E. A., Ahmad, R. & Ashraf, M. Y. (2011). Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science, 5(6), 764-778.
Wilkinson, S. & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell & Environment, 33(4), 510-525. 10.1111/j.1365-3040.2009.02052.x
Xu, C., Xia, C., Xia, Z., Zhou, X., Huang, J., Huang, Z., Liu, Y., Jiang, Y., Casteel, S. & Zhang, C. (2018). Physiological and transcriptomic responses of reproductive stage soybean to drought stress. Plant Cell Reports, 37, 1611-1624. 10.1007/s00299-018-2332-3
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Jeandson Silva Viana; Cleyton Tenório Barros; João Paulo Goes da Silva Borges; Maria Beatrice Gueiros Silva; Edilma Pereira Gonçalves; Mácio Farias de Moura
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.