Avaliação da Viabilidade de Implementação de Sistemas Híbridos Renováveis para o Acesso de Energia na Região Amazônica

Autores

  • Bárbara Zon Nascimento Universidade Federal do Espírito Santo
  • Thais Caliman Catelan Universidade Federal do Espírito Santo
  • Gisele de Lorena Diniz Chaves Universidade Federal do Espírito Santo
  • Wanderley Cardoso Celeste Universidade Federal do Espírito Santo

DOI:

https://doi.org/10.33448/rsd-v8i10.1415

Palavras-chave:

Sistema Isolado; Amazônia; Energia Renovável; Sistemas Híbridos.

Resumo

A Região Amazônica é caracterizada por ter uma floresta densa e heterogênea, rios caudalosos e extensos, os quais dificultam o acesso à energia elétrica, por este motivo, faz parte do Sistema Isolado (SI). O SI é composto por sistemas de menor porte não-conectadosnão conectados ao Sistema Interligado Nacional (SIN), os quais os custos de interligações são inviáveis. No cenário atual, as fontes de energia renováveis estão atraindo um grande número de pesquisadores devido à crescente escassez de combustíveis fósseis. Uma das alternativas que vêm sendo estudadas para facilitar o fornecimento de energia nessas localidades, é a utilização de sistemas híbridos renováveis de energia (SH). Dessa forma, o presente estudo visa avaliar o potencial de SH renováveis na Região Amazônica. Para isso, foi elaborado um quadro comparativo dos tipos de energia renovável com potencial de uso nos SH e uma Matriz SWOT por meio de uma revisão bibliográfica. A partir da análise desenvolvida, notou-se que há uma quantidade significativa de pontos positivos que combinadas a políticas governamentais de incentivos fiscais e de crédito podem viabilizar a implantação de híbridos de energia renovável.

Referências

Abbaspour, M., Satkin, M., Mohammadi-Ivatloo, B., Lotfi, F. H., & Noorollahi, Y. (2013). Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES). Renewable Energy, 51 (1), 53-59.

Agarwal, R. K., Hussain, I., & Singh, B. (2016). LMF-based control algorithm for singlestage three-phase grid integrated solar PV system. IEEE Transactions Sustainable Energy, 4 (7), 1379–1387.

Ávila-Prats D., Alesanco-García, R., & Veliz-Alonso, J. (2011). Sistemas híbridos con base en las energías renovables para el suministro de energía a plantas desaladoras. Ingeniería Mecánica, 14 (1), 22-30.

Bacellar, A. A., & Rocha, B. R. P. (2010). Wood-fuel biomass from the Madeira River: A sustainable option for electricity production in the Amazon Region. Energy Policy, 38 (1), 5004–5012.

Barbosa, B. S., Koolen, H. H. F., Barreto, A. C., Silva, J. D., Figliulo, R., & Nunomura, S. M. (2009). Aproveitamento do Óleo das Amêndoas de Tucumã do Amazonas na Produção de Biodiesel. Acta Amazonica, 39 (2), 371-376.

Beluco, A., Souza, P. K., & Krenzinger, A. (2008). PV hydro hybrid systems. IEEE Latin American Transactions, 6 (7), 626-631.

Bouzelata, Y., Altin, N., Chenni, R., & Kurt, E. (2016). Exploration of optimal design and performance of a hybrid wind-solar energy system. Internation Journal of Hydrogen Energy, 41 (1), 12497-12511.

Claudiado, V. C., Emilio, L. R., & Assmann, D. (2008). Technological innovation policies to promote renewable energies: Lessons from the European experience for the Brazilian case. Renewable and Sustainable Energy Reviews, 12 (1), 65-90.

Coelho, S. T., & Goldemberg, J. (2013). Energy access: Lessons learned in Brazil and perspectives for replication in other developing countries. Energy Policy, 61 (1), 1088-1096.

ELETROBRÁS. (2016). Informe de Mercado. Recuperado em 20 maio, 2018, de http://eletrobras.com/pt/AreasdeAtuacao/geracao/sistemas_isolados_mercado/informe%20de%20mercado/2016/2%C2%B0_Semestre_2016.pdf.

Els, R. H., Vianna, J. N. S., & Brasil, A. C. P. Jr. (2012). The Brazilian experience of rural electrification in the Amazon with decentralized generation – The need to change the paradigm from electrification to development. Renewable and Sustainable Energy Reviews, 16 (3), 1450-1461.

Gómez, M. F., & Silveira, S. (2015). The last mile in the Brazilian Amazon – A potential pathway for universal electricity access. Energy Policy, 82 (1), 23–37.

Guedes, A., Braga, S. L., & Pradelle, F. (2018). Performance and combustion characteristics of a compression ignition engine running on diesel-biodiesel-ethanol (DBE) blends – Part 2: Optimization of injection timing. Fuel, 225 (1), 174-183.

Guerra, J. B. S. O. A., Dutra, L., Schwinden, N. B. C., & Andrade, S. F. (2015). Future scenarios and trends in energy generation in brazil: supply and demand and mitigation forecasts. Journal of Cleaner Production, 103 (1), 197-210.

IBGE - Instituto Brasileiro de Geografia e Estatística. (2010). Censo 2010. Recuperado em 18 maio, 2018, de http://censo2010.ibge.gov.br/.

Itai, Y., Santos, R., Branquinho, M., Malico, I., Ghesti, G. F., & Brasil, A. M. (2014). Numerical and experimental assessment of a downdraft gasifier for electric power in Amazon using açaí seed (Euterpe oleracea Mart.) as a fuel. Renewable Energy, 66 (1), 662-669.

Kalagirou, S. A. (2001). Use of TRNSYS for modelling and simulation of a hybrid pv-thermal solar system for Cyprus. Renewable Energy, 23 (2), 247-260.

Kiray, V., & Sagbansua, L. (2013). Barriers in front of solar energy plants in Turkey and investment analysis of solution scenarios-case study on a 10 MW system. Journal of Renewable and Sustainable Energy, 5 (4), 1-14.

Kobayashi, N., & Fan, L. (2011). Biomass direct chemical looping process: A perspective. Biomass and Bioenergy, 35 (1), 1252-1262.

Kolhe, M. L., Ranaweera, K. I. U., & Gunawardana, A. S. (2015). Techno-economic sizing of off-grid hybrid renewable energy system for rural electrification in Sri Lanka. Sustainable Energy Technologies and Assessments, 11 (1), 53-64.

Lago Neto, J. C. L., Costa Jr., C. T. C., Bitar, S. D. B., & Barra Jr., W. B. (2011). Forecasting of energy and diesel consumption and the cost of energy production in isolated electrical systems in the Amazon using a fuzzification process in time series model. Energy Policy, 39 (1), 4947-4955.

Li, G., Zhu, R., & Yang, Y. (2012). Polymer solar cells. Nature Photonics, 6 (1), 153-161.

Macedo, W. N., Monteiro, L. G., Corgozinho, I. V., Macêdo, E. N., Rendeiro, G., Braga, W., & Bacha, L. (2016). Biomass based microturbine system for electricity generation for isolated communities in amazon region. Renewable Energy, 91 (1), 323-333.

Makhija, S. P., & Dubey, S. P. (2018). Feasibility of PV–biodiesel hybrid energy system for a cement technology institute in India. Environment, Development and Sustainability, 20 (1), 377–387.

Matos, F. B., Camacho, J. R., Rodrigues, P., & Guimarães, S. C. (2011). A research on the use of energy resources in the Amazon. Renewable and Sustainable Energy Reviews, 15 (1), 3196– 3206.

Miguel, F. K., & Ramos, D. S. (2017). Analysis of PROINFA Power Plants Portfolio from the Perspective of Markowitz. IEEE Latin America Transactions, 15 (9), 1650-1656.

MME – Ministério de Minas e Energia. (2008). Sistemas híbridos. Recuperado em 04 abril, 2018, de https://www.mme.gov.br/luzparatodos/downloads/Solucoes_Energeticas_para_a_ Amazonia_Hibrido.pdf.

Nerini, F. F., Howels, M., Bazilian, M., & Gómez, M. F. (2014). Rural electrification options in the Brazilian Amazon – a multi-criteria analysis. Energy for Sustainable Development, 20 (1), 36-48.

ONS - Operador Nacional do Sistema Elétrico. (2017). Plano Anual de Operação dos Sistemas Isolados para 2018. Recuperado em 03 abril, 2018, de http://www.ons.org.br/ AcervoDigitalDocumentosEPublicacoes/ONS_RE-3-0138-2017_PEN_SISOL_2018.pdf.

ONU. (2016). Organização das Nações Unidas. Recuperado em 18 maio, 2018, de https://nacoesunidas.org/banco-mundial-12-bilhao-de-pessoas-ainda-vivem-sem-eletricidade-e-663-milhoes-sem-agua-potavel/.

Pablo-Romero, M. D. P. (2013). Solar Energy: Incentives to Promote PV in EU27. AIMS Energy, 1 (1), 28-47.

Paschalidou, A., Tsatiris, M., & Kitikidou, K. (2016). Energy crops for biofuel production or for food? - SWOT analysis (case study: Greece). Renewable Energy, 93 (1), 636-647.

Pereira, M. G., Freitas, M. A. V., & Silva, N. F. (2010). Rural electrification and energy poverty: empirical evidences from Brazil. Renewable and Sustainable Energy Reviews, 14 (1), 1229-1240.

Prado, F. A., Athayde, S., Mossa, J., Bohlman, S., Leite, F., & Oliver-Smith, A. (2016). How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil. Renewable and Sustainable Energy Reviews, 53 (1), 1132–1136.

Pronobis, M. (2005). Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations. Biomass Bioenergy, 28 (4), 375-383.

Roberts, J. J., Cassula, A. M., Silveira, J. L., Bortoni, E. C., & Mendiburu, A. Z. (2018). Robust multi-objective optimization of a renewable based hybrid power system. Applied Energy, 223 (1), 52-68.

Salameh, J. P., Cauet, S., Etien, E., Sakout, A., & Rambault, L. (2018). Gearbox condition monitoring in wind turbines: A review. Mechanical Systems and Signal Processing, 111 (1), 251-264.

Shaik, A. G., & Mahela, O. P. (2018). Power quality assessment and event detection in hybrid power system. Electric Power Systems Research, 161 (1), 26-44.

Siddaiah R., & Saini, R. P. (2016). A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off-grid applications. Renewable and Sustainable Energy Reviews, 58 (1), 376-96.

Silva, R. C., Marchi Neto, I., & Seifert, S. S. (2016). Electricity supply security and the future role of renewable energy sources in Brazil. Renewable and Sustainable Energy Reviews, 59 (1), 328-341.

Soedibyo, Suryoatmojo, H., Robandi, I., & Ashari, M. (2012). Optimal Design of Fuel-cell, Wind and Micro-hydro Hybrid System using Genetic Algorithm. Telkomnika, 10 (4), 695-702.

Toklu, E. (2017). Biomass energy potential and utilization in Turkey. Renewable Energy, 107 (1), 235-244.

Vasu, A., Hagos, F. Y., Noor, M. M., Mamat, R., Azmi, W. H., Abdullah, A. A., & Ibrahim, T. K. (2017). Corrosion effect of phase change materials in solar thermal energy storage application. Renewable and Sustainable. Energy Reviews, 76 (1), 19-33.

Yu, H., Duan, J., Du, W., Xue, S., & Sun, J. (2017). China's energy storage industry: develop status, existing problems and countermeasures. Renewable and Sustainable Energy Reviews, 71 (1), 767-784.

Zhang, K. H., Zhang, K., Cao, Y., & Pan, W. P. (2013). Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses. Bioresource Technology, 131 (1), 325-332.

Zhou, C., Liu, G., Wang, X., & Qi, C. (2016). Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage. Bioresource Technology, 218 (1), 418-427.

Downloads

Publicado

24/08/2019

Como Citar

NASCIMENTO, B. Z.; CATELAN, T. C.; CHAVES, G. de L. D.; CELESTE, W. C. Avaliação da Viabilidade de Implementação de Sistemas Híbridos Renováveis para o Acesso de Energia na Região Amazônica. Research, Society and Development, [S. l.], v. 8, n. 10, p. e448101415, 2019. DOI: 10.33448/rsd-v8i10.1415. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/1415. Acesso em: 30 jun. 2024.

Edição

Seção

Artigos de Revisão