Aditivo aromatizante artificial de amêndoa: Um composto potencialmente tóxico para o meio ambiente

Autores

DOI:

https://doi.org/10.33448/rsd-v10i4.14203

Palavras-chave:

Aromatizante artificial; Redução do potencial de germinação; Redução da divisão celular; Indução de alterações celulares; Efeito aneugênico; Mortalidade; Estabilidade no ambiente.

Resumo

Neste trabalho, foi investigada a composição química do aromatizante artificial de amêndoa, bem como a toxicidade desse aditivo frente a bioensaios comumente utilizados para avaliar o risco ambiental oferecido por compostos e/ou substâncias químicas. A identificação química detectou etanol (solvente), sacarina, benzaldeído e ácido benzóico. Em L. sativa e A. cepa, concentrações de 100 e 10 µL/L de aromatização causaram redução na taxa de germinação e inibição do crescimento radicular. Em A. cepa, às 24 e 48 horas de exposição, as concentrações de 100 e 10 µL/L reduziram significativamente a divisão dos meristemas radiculares, e as concentrações de 1 e 0,10 µL/L induziram alterações celulares e foram aneugênicas aos meristemas das plantas. O aromatizante foi altamente tóxico para A. salina com CL50 = 0,082 ppm. Além disso, ao particionar em soluções saturadas de octano e água, a solução comercial da amêndoa apresentou um log Kow de 1,37. Com base nos resultados obtidos, nas condições de análise estabelecidas, o aromatizante foi significativamente fitotóxico, citogenotóxico e tóxico, e com base no Kow estima-se que tenha boa estabilidade na água e no solo. Esses resultados indicam que o aroma de amêndoa é um composto potencialmente tóxico para o meio ambiente.

Referências

Aissa, A. F., Bianchi, M. L. P., Ribeiro, J. C., Hernandes, L. C., Faria, A. F. & Mercadante, A. Z. (2012). Comparative study of β-carotene and microencapsulated β-carotene: evaluation of their genotoxic and antigenotoxic effects. Food Chemical and Toxicology, 50, 1418–1424. https://doi.org/10.1016/j.fct.2012.02.030

Amchova, P., Kotolova, H. & Ruda-Kucerova, J. (2015). Health safety issues of synthetic food colorants. Regulatory Toxicology and Pharmacology, 73, 914–922. https://doi.org/10.1016/j.yrtph.2015.09.026

Arif, A. & Uysal, H. (2013). Examination of the Genotoxic Effects of Various Parabens Used as Food Additives with the Drosophila Wing Spot Test (SMART). Journal of Applied Biological Science, 7, 83-88.

Bencsik, D., Gazsi, G., Urbányi, B., Szende, B., Rácz, G., Véha, A. & Csenki, Z. (2018). Assessment of subacute genotoxic and histopathological effects of a food flavour ingredient, 4-ethylbenzaldehyde (EBA) on zebrafish (Danio rerio) model. Acta Alimentaria, 47, 245-251. https://doi.org/10.1556/066.2018.47.2.14

Biruk, L. N., Moretton, J., Iorio, A. F., Weigandt, C., Etcheverry, J., Filippetto, J. & Magdaleno, A. (2017). Toxicity and genotoxicity assessment in sediments from the Matanza-Riachuelo river basin (Argentina) under the influence of heavy metals and organic contaminants. Ecotoxicology Environmental Safety, 135, 302-311. https://dx.doi.org/10.1016/j.ecoenv.2016.09.024

Bisceglie, F., Degola, F., Rogolino, D., Giannelli, G., Orsoni, N., Spadola, G. & Pelosi, G. (2020). Sisters in structure but different in character, some benzaldehyde and cinnamaldehyde derivatives differentially tune Aspergillus flavus secondary metabolism. Science Report, 10, 1-14. https://doi.org/10.1038/s41598-020-74574-z

Bom, S.; Jorge, J.; Ribeiro, H. M. & Marto, J. (2019). A step forward on sustainability in the cosmetics industry: A review. Journal Cleaner Product, 225, 270-290. https://doi.org/10.1016/j.jclepro.2019.03.255

Borrirukwisitsak, S., Keenan, H. E. & Gauchotte-Lindsay. C. (2012). Effects of salinity, pH and temperature on the octanol-water partition coefficient of bisphenol A. International Journal of Environmental Science and Development, 3, 460. https://doi.org/10.1038/s41598-020-74574-z

Brasil (2007). Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolution RDC n.2, of January 15, 2007. Approves the "Resolution of the Collegiate Board of Directors that approves the technical regulation on flavoring additives, which is included as an annex to this Resolution" (in portuguese). http://www.anvisa.gov.br/legis/resol/2007/rdc/02_170107rdc.htm>

Carvalho, S. J. P., Dias, A. C. R., Minamiguchi, M. H., Nicolai, M. & Christoffoleti, P. J. (2015). Residual activity of six herbicides applied to the soil in the dry season (in Portuguese). Ceres, 59.

Cumming, H. & Rücker, C. (2017). Octanol–water partition coefficient measurement by a simple 1H NMR Method. ACS Omega, 2, 6244-6249.

Demir, E., Kocaglu, S. & Kaya, R. (2010). Assessment genotoxic effects of benzyl derivatives by comet assay. Food Chemical and Toxicology, 48,1239-1242. https://dx.doi.org/10.1016/j.ftc.2010.02.016

Dikilitas, S., Tütünoglu, B., Aksoy, Ö. & Rind, N. A. (2018). The Cytotoxic Effects of Benzoic Acid and Coumarin on Allium cepa var. cepa. Journal of Functional and Environmental Botany, 8, 1-6. http://doi.org/10.5958/2231-1750.2018.00001.X

EFSA. (2012). Scientific opinion on flavouring group Evaluation 20, Revision 4 (FGE.20REV4): Benzyl alcohols, benzaldehydes, a related acetal, benzoic acids, and relates esters from chemical groups 23 and 30. EFSA Journal, 10, 1–140. https://doi.org/10.2903/j.efsa.2012.2994

FAO. Food and Agriculture Organization". Encyclopedia Britannica. (2006). https://www.britannica.com/topic/Food-and-Agriculture-Organization.

Francica, L. S., Goncalves, E. V., Santos, A. A., Vicente, Y. S., Silva, T. S., Silva, A. P. S., Gonzalez, S., Almeida, P. M., Feitoza, L. L., Bueno, P. A. A., Souza, D. C. & Peron, A. P. (2021). Antiproliferative, genotoxic and mutagenic potential of synthetic chocolate food flavoring: Toxicity of chocolate food flavoring. Brazilian Journal of Biolology, 82, 223.

Franco, A. &Trapp, S. (2008). Estimation of the soil–water partition coefficient normalized to organic carbon for ionizable organic chemicals. Environmental Toxicology and Chemistry International Journal, 27, 1995-2004. https://doi.org/10.1897/07-583.1

Gholivand, M. B. & Ahmadi, F. (2008). Simultaneous determination of trans-cinnamaldehyde and benzaldehyde in different real samples by differential pulse polarography and study of heat stability of trans-cinnamaldehyde. Analytical Letters, 41(18), 3324-3341. https://doi.org/10.1080/00032710802507893

Guedes, C. M., Santos, F. K. S., Silva, T., Soares, A. P., Lima, M. V. L., Oliveira, V. A. & Peron, A. P. (2018). Cytotoxic and genotoxic potential of Ginkgo biloba L., in industrialized and without-additive forms. Bioscience Journal, 44, 1017-1024. https://doi.org/10.14393/BJ-v34n1a2018-39745

Guerra, M. & Souza, M. J. (2002) How to observe chromosomes: a guide to techniques in plant, animal and human cytogenetics (in Portuguese). Ribeirão Preto: FUNPEC. 200 p.

Herrero, O.; Martín, J. P. ; Freire, P. F. ; López, L. C. ; Peropadre, A. & Hazen, M. J. (2012). Toxicological evaluation of three contaminants of emerging concern by use of the Allium cepa test. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 743, 20-24. https://doi.org/10.1016/j.mrgentox.2011.12.028

Himri, I.; Guaadaoui, A.; Souna, F.; Bouakka, M.; Melhaoui, A.; Hakkoum, A. & Saalaoui, E. (2013). Toxicity testing of Tartrazine using the nematode Caenorhabditis elegans, brine shrimp larvae (Artemia salina) and KGN Granulosa Cell Line. Journal of Applied Pharmacology Science, 3, 51. https://doi.org/10.7324/JAPS.2013.31110

IFF International Flavors and Fragrances INC. (2017). Sustainability Report. https://www.iff.com/~/media/files/IFF/documents/2017-iff-sustainability-report-04-12-18-updated.pdf.

Industryarc. (2021). Flavor & Fragrances Market – Industry analyses, market size share, Trends, Applications Analyses, Grow and Forecast 2019-2025. https://www.industryarc.com/Research/Flavors-fragrances-Market.

Koche, J. C. (2012). Fundamentos de metodologia cientifica. Vozes.

Leffingwell & Associates (2015-2020) Flavor & Fragrances Industry Leaders. http://www.leffingwell.com_10htm.

Marques, G. S. ; Silva, S. I. D. O. D. ; Ferreira, P. M. P. & Peron, A. P. (2015) Cytotoxic and genotoxic potential of liquid synthetic food flavorings evaluated alone and in combination. Ciência e Tecnologia de Alimentos, 35, 183-188. http://dx.doi.org/10.1590/1678-457X.6596

Martins, J., Teles, L. O. & Vasconcelos, V. (2007). Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environmentl International, 33, 414-425. https://doi.org/10.1016/j.envint.2006.12.006

Matos, L. A., Cunha, A. C., Sousa, A. A., Maranhão, J. P., Santos, N. R., Gonçalves, M. C. M. & Ferreira-Junior, H. (2017). The influence of heavy metals on toxicogenetic damage in a Brazilian tropical river. Chemosphere, 185, 852-859. https://doi.org/10.1016/j.chemosphere.2017.07.103

Mendes, S. A., Gonçalves, E. V., Frâncica, L. S., Correia, L. B. C., Nicola, J. V. N., Pestana, A. C. Z. & Peron, A. P. (2020). Quality of Natural Waters Surrounding Campo Mourão, State of Paraná, Southern Brazil: Water Resources Under the Influences from Urban and Agricultural Activities. Water, Air & Soil Pollution, 231, 1-10. https://doi.org/10.1007/s11270-020-04795-5

Mendes, S., Frâncica, L. S., Gonçalves, É. V., Coleto, L. B., Nicola, J. V. N., Pestana, A. C. Z. & Peron, A. P. (2021). Prospecting for Phytotoxicity and Enzymatic Modulation of Waters from Springs in the Surroundings of Campo Mourão, State of Paraná, Brazil, in Lactuca sativa L Water, Air & Soil Pollution, 232, 1-10. https://doi.org/10.1007/s11270-021-05003-8

Nunes, R. D. M., Sales, I. M. S., Silva, S. I., Sousa, J. M. C. & Peron, A. P. (2017). Antiproliferative and genotoxic effect of food additives with synthetic aroma and flavor, of the same types as natural and artificial. Brazilian Journal of Biology, 77, 50-154. https://doi.org/10.1590/1519-6984.12115

Oliveira, V. M., Oliveira, T. W. N., Damasceno, A. N. C., Oliveira, C. E. S., Medeiros, S. R. A. & Castro, J. M. (2017). Evaluation of cytotoxic and mutagenic effects of two artificial sweeteners by using eukaryotic test systems. African Journal of Biotechnology, 16, 547-551. https://doi.org/10.5897/AJB2016.15695

Parra, A. L., Yhebra, R. S., Sardiñas, I. G. & Buela, L. I. (2001). Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine, 8, 395-400.

Queiroz, F. M. D., Matias, K. W. D. O., Cunha, M. M. F. D. & Schwarz, A. (2013). Evaluation of (anti) genotoxic activities of Phyllanthus niruri L. in rat bone marrow using the micronucleus test. Brazilian Journal of Pharmacology Science, 49, 135-148. http://dx.doi.org/10.1590/S1984-82502013000100015.

Ramesh, M. & Muthuraman, A. (2018). Flavoring and coloring agents: Health risks and potential problems. In: Natural and artificial flavoring agents and food dyes. London: Academic Press, 300p.

Rocha, R. B. R., Peron, A. P. P., Santos, F. K. S., Marques, M. M. M., Sousa, M. E. S., Oliveira, V. A. D. O. & Nascimento, A. L. D. (2018). Toxic, cytotoxic and genotoxic potential of synthetic food flavoring. Acta Toxicologia Argentina, 26, 65-70.

Rosa, C. S., Veras, K. S., Silva, P. R., Lopes-Neto, J. J., Cardoso, H. L. M., Alves, L. P. L. (2016). Chemical composition and toxicity against Aedes aegypti L. and Artemia salina leach from the essential oil of the leaves of Myrciasylvatica (G. Mey.) DC. Revista Brasileira de Plantas Medicinais, 18, 19–26. https://doi.org/10.1590/1983-084X/15_006

Sales, I. M. S., Silva, J. M., Moura, E. S. R., Alves, F. D. S, Silva, F. C. C., Sousa, J. M. C. & Peron, A. P. (2018). Toxicity of synthetic flavorings, nature identical and artificial, to hematopoietic tissue cells of rodents. Brazilian Journal of Biology, 78, 306-310. https://doi.org/10.1590/6984.07716.

Sales, I. M. S., Silva, J. M., Moura, E. S. R., Alves, F. D. S., Silva, F. C. C., Sousa, J. M. C. & Peron, A. P. (2017). Acute toxicity of grape, plum and orange synthetic food flavourings evaluated in vivo test systems. Food Technology and Biotechnology, 55, 131-137. https://doi.org/10.1590/1519-6984.07716

Sani, Z. M, Abdullahi, I. . L. & Sani, A. (2018). Toxicity evaluation of selected dyes commonly used for clothing materials in urban Kano, Nigeria. European Journal of Experimental Biology, 8, 26. https://doi.org/10.21767/2248-9215.100067

Silva, T. S., Silva, A. P. S., Santos, A. A., Ribeiro, K. G., Souza, D. C., Bueno, P. A. A. & Peron, A. P. (2020). Cytotoxicity, Genotoxicity, and Toxicity of Plant Biostimulants Produced in Brazil: Subsidies for Determining Environmental Risk to Non-Target Species. Water, Air & Soil Pollution, 231. https://doi.org/10.1007/s11270-020-04614-x

Tabrez, S. & Ahmad, M. (2011). Components of antioxidative system in Allium cepa as the toxicity monitor of trichloroethylene (TCE). Toxicology & Environmental Chemistry, 93, 73-84. https://doi.org/10.1080/02772248.2010.498375

Teaf, C. M., Teaf, K. W. & Covert, D. J. (2015). Toxicology & environmental significance of benzaldehyde. In Annual International Conferences, 21, 43.

Türkoğlu, Ş. (2007). Genotoxicity of five food preservatives tested on root tips of Allium cepa L. Mutation Research, 626 (1-2), 4-14. http://dx.doi.org/10.1016/j.mrgentox.2006.07.006

Uhde, E. & Schulz, N. (2015). Impact of room fragrance products on indoor air quality. Atmospheric Environmental, 106, 492-502.

Wu, J., Gao, Y., Qin, Y., Li, G. & An, T. (2021). Photochemical degradation of fragrance ingredient benzyl formate in water: Mechanism and toxicity assessment. Ecotoxicology and Environmental Safety, 211, 111950.

Yadav, K. & Singh, N. B. (2013). Effects of benzoic acid and cadmium toxicity on wheat seedlings. Chilean Journal of Agricultural Research, 73, 168-174. http://dx.doi.org/10.4067/S0718-58392013000200013

Zaineddin, A. K., Buck, K., Vrieling, A., Geinz, J., Flesch-Janys, D. & Linseisen, J. (2012). The association between dietary lignans, phytoestrogen-rich foods, and fiber intake and postmenopausal breast cancer risk: a German case-control study. Nutrition and Cancer, 64, 652-665. https://doi.org/10.1080/01635581.2012.683227

Zhao, L., Ortiz, C., Adeleye, A.S., Hu, Q., Zhou, H., Huang, Y. & Keller, A.A. (2016). Metabolomics to detect response of lettuce (Lactuca sativa) to Cu (OH) 2 nanopesticides: Oxidative stress response and detoxification mechanisms. Environmental Science and Technology, 50, 9697–9707. https://doi.org/10.1021/acs.est.6b02763

Zilifdar, F., Foto, E., Ertan-Bolelli, T., Yildiz, I., Aki-Yalcin, E. & Diril, N. (2018). Inhibition of DNA Topoisomerases by a Series of Benzoxazoles and their Possible Metabolites. Letters in Drug Design & Discovery,15, 1155-1162. https://doi.org/10.2174/1570180815666180124143246

Downloads

Publicado

21/04/2021

Como Citar

GONZALEZ, R. da S.; RIBEIRO, K. G.; SANTOS, A. A. dos; MEDEIROS, F. V. da S. .; SOUZA, D. C. de; MARQUES, M. M. M.; PERON, A. P. Aditivo aromatizante artificial de amêndoa: Um composto potencialmente tóxico para o meio ambiente. Research, Society and Development, [S. l.], v. 10, n. 4, p. e51810414203, 2021. DOI: 10.33448/rsd-v10i4.14203. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14203. Acesso em: 8 jan. 2025.

Edição

Seção

Ciências Agrárias e Biológicas