Gênero Candida - Fatores de virulência, Epidemiologia, Candidíase e Mecanismos de resistência
DOI:
https://doi.org/10.33448/rsd-v10i4.14283Palavras-chave:
Candida albicans; C. não-albicans; Candidíase; Fatores de virulência; Mecanismos de resistência.Resumo
Gênero Candida é encontrado vivendo de forma simbionte na microbiota da mucosa reprodutiva e gastrointestinal de 50-70% dos indivíduos saudáveis, em determinadas condições esses micro-organismos podem se tornar patogênicos, a ponto de se tornar a terceira causa das septicemias ao redor do mundo. Podem causar infecções superficiais, atingindo mucosas e pele, bem como infecções invasivas, em órgãos e tecidos profundos como intestino, pulmão e sangue. A espécie mais isolada em infecções causadas pelo gênero é a Candida albicans, porém é cada vez mais recorrente o isolamento de espécies de Candida não-albicans, como: C. glabrata, C. krusei, C. tropicalis e C. parapsilosis. Além disso, C. albicans e espécies de C. não-albicans vêm sendo cada vez mais relatadas pelo aparecimento de resistência aos antifúngicos de uso clínico, dificultando o tratamento de infecções causadas por estas cepas. Este trabalho teve como objetivo reunir informações atualizadas sobre o gênero Candida sobre fatores de virulência, epidemiologia, candidíase, tratamentos e mecanismos de resistência.
Referências
Akins, R. A. (2005). An update on antifungal targets and mechanisms of resistance in Candida albicans. Medical Mycology, 43(4), 285-318.
Al-Fattani, M. A., & Douglas, L. J. (2006). Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. Journal of Medical Microbiology, 55(8), 999-1008.
Balashov, S. V., Park, S., & Perlin, D. S. (2006). Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrobial Agents of Chemotherapy, 50, 2058–2063.
Birnbaum, J. E. (1990). Pharmacology of the allylamines. Journal of the American Academy of Dermatology, 23(4), 782-785.
Bulatova, N. R., & Darwish, R. M. (2008). Effect of chemosensitizers on minimum inhibitory concentrations of fluconazole in Candida albicans. Medical Principles and Practice, 17(2), 117-121.
Calderone, R. A., & Clancy, C. J. (Eds.). (2011). Candida and candidiasis. American Society for Microbiology Press.
Cambuim, I. I., Macêdo, D. P., Delgado, M., Lima, K. M., Mendes, G. P., Souza-Motta, C. M., Lima, D. M., Fernandes, M. J., Magalhães, O. M., Queiroz, L. A., & Neves, R. P. (2011). Clinical and mycological evaluation of onychomycosis among Brazilian HIV/AIDS patients. Revista da Sociedade Brasileira de Medicina Tropical, 44(1), 40-42.
Castanheira, M., Messer, S. A., Rhomberg, P. R., & Pfaller, M. A. (2016). Antifungal susceptibility patterns of a global collection of fungal isolates: results of the SENTRY Antifungal Surveillance Program (2013). Diagnostic Microbiology and Infectious Disease, 85, 200-204.
Cannon, R. D., Lamping, E., Holmes, A. R., Niimi, K., Baret, P. V., Keniya, M. V., ... & Monk, B. C. (2009). Efflux-mediated antifungal drug resistance. Clinical microbiology reviews, 22(2), 291-321.
Cauchie, M., Desmet, S., & Lagrou, K. (2017). Candida and its dual lifestyle as a commensal and a pathogen. Research in Microbiology, 168(9-10), 802-810.
Cohen, B. E. (2010). Amphotericin B membrane action: role for two types of ion channels in eliciting cell survival and lethal effects. The Journal of Membrane Biology, 238(1-3), 1-20.
Dermawan, J. K. T., Ghosh, S., Keating, M. K., Gopalakrishna, K. V., & Mukhopadhyay, S. (2018). Candida pneumonia with severe clinical course, recovery with antifungal therapy and unusual pathologic findings: A case report. Medicine, 97(2), e9650, 2018.
Dick, J. D., Merz, W. G., & Saral, R. (1980) Incidence of polyene-resistant yeasts recovered from clinical specimens. Antimicrobial Agents of Chemotherapy, 18, 158-63.
Doi, A. M., Pignatari, A. C., Edmond, M. B., Marra, A. R., Camargo, L. F., Siqueira, R. A., Mota, V. P., & Colombo, A. L. (2016). Epidemiology and microbiologic characterization of nosocomial candidemia from a Brazilian national surveillance program. PloS one, 11(1), e0146909.
Eddouzi, J., Parker, J. E., Vale-Silva, L. A., Coste, U. M., Ischer, F., Kelly, S., Manai, H., & Sanglard, D. (2013). Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrobial Agents of Chemotherapy, 57(7), 3182–3193.
Emri, T., Majoros, L., Tóth, V., & Pócsi, I. (2013). Echinocandins: production and applications. Applied Microbiology and Biotechnology, 97(8), 3267-3284.
Fernandes, T., Silva, S., & Henriques, M. (2015). Candida tropicalis biofilm's matrix—involvement on its resistance to amphotericin B. Diagnostic Microbiology and Infectious Disease, 83(2), 165-169.
Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology. 8, 623–633.
Hani, L., Shivakumar, H. G., Vaghela, R., Osmani, R. A., & Shrivastava, A. (2015). Candidiasis: a fungal infection-current challenges and progress in prevention and treatment. Infectious Disorders-Drug Targets, 15, 42-52.
Hellstein, J. W., & Marek, C. L. (2019). Candidiasis: Red and White Manifestations in the Oral Cavity. Head and Neck Pathology, 13(1), 25-32.
Henry, K. W., Nickels, J. T., & Edlind, T. D. (2000). Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrobial Agents and Chemotherapy, 44(10), 2693-2700.
Kanafani, Z. A., & Perfect, J. R. (2008). Resistance to antifungal agents: mechanisms and clinical impact. Clinical infectious diseases, 46(1), 120-128.
Kelly, S. L.; Lamb, D. C.; Kelly, D. E.; Loeffler, J.; Einsele, H. (1996). Resistance to fluconazole and amphotericin in Candida albicans from AIDS patients. Lancet, 348(9040), 1523–1524.
Kelly, S. L.; Lamb, D. C.; Kelly, D. E.; Manning, N. J.; Loeffler, J.; Hebart, H.; Schumacher, U.; Einsele H. (1997). Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta-5,6-desaturation. FEBS Letters, 400(1), 80–82.
Kristanc, L., Božič, B., Jokhadar, Š. Z., Dolenc, M. S., x Gomišček, G. (2019). The pore-forming action of polyenes: From model membranes to living organisms. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1861(2), 418-430.
Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P., & Hall-Stoodley, L. (2017). Targeting microbial biofilms: current and prospective therapeutic strategies. Nature Reviews Microbiology, 15(12), 740.
Kordalewska, M., Lee, A., Park, S., Berrio, I., Chowdhary, A., Zhao, Y., & Perlin, D. S. (2018). Understanding echinocandin resistance in the emerging pathogen Candida auris. Antimicrobial Agents and Chemotherapy, 62(6), e00238-18.
Knoke, M., & Bernhardt, H. (2006). The first description of an oesophageal candidosis by Bernhard von Langenbeck in 1839. Mycoses, 49(4), 283–287.
Kullberg, B. J., & Arendrup, M. C. (2015). Invasive candidiasis. New England Journal of Medicine, 373(15), 1445-1456.
Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119-128.
Martins, N., Ferreira, I. C., Barros, L., Silva, S., & Henriques, M. (2014). Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathology, 177(5-6), 223-240.
Marichal, P., Koymans, L., Willemsens, S., Bellens, D., Verhasselt, P., Luyten, W., Borgers, M., Ramaekers, F. C. S., Odds, F. C., Vanden Bossche, H. (1999). Contribution of mutations in the cytochrome P450 14α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology, 145(10), 2701-2713.
Monod, M., & Borg-Von Zepelin, M. (2002). Secreted aspartic proteases as virulence factors of Candida species. Biological Chemistry, 383(7-8), 1087-1093.
Modrzewska, B., & Kurnatowski, P. (2013). Selected pathogenic characteristics of fungi from the genus Candida. Annals Parasitology, 59(2), 57-66.
Niimi, K., Maki, K., Ikeda, F., Holmes, A. R., Lamping, E., Niimi, M., Monk, B. C., & Cannon, R. D. (2006). Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility. Antimicrobial Agents and Chemotherapy, 50, 1148–1155.
Onishi, J., Meinz, M., Thompson, J., Curotto, J., Dreikorn, S., Rosenbach, M., Douglas, C., Abruzzo, G., Flattery, A., Kong, L., Cabello, A., Vicente, F., Pelaez, F., Diez, M. T., Martin, I., Bills, G., Giacobbe, R., Dombrowski, A., Schwartz , R., Morris, S., Harris, G., Tsipouras, A., Wilson, K., & Kurtz, M. B. (2000). Discovery of novel antifungal (1, 3)-β-D-glucan synthase inhibitors. Antimicrobial Agents and Chemotherapy, 44(2), 368-377.
Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L., & Kullberg, B. J. (2018). Invasive candidiasis. Nature Reviews Disease Primers, 4, 18026.
Park, S., Kelly, R., Kahn, J. N., Robles, J., Hsu, M. J., Register, E., Li, W., Vyas, V., Fan, H., Abruzzo, G., Flattery, A., Gill, C., Chrebet, G., Parent, S. A., Kurtz, M., Teppler, H., Douglas, C. M., & Perlin, D. S. (2005). Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrobial Agents and Chemotherapy, 49, 3264–3273.
Perlin, D. S. (2011). Current perspectives on echinocandin class drugs. Future Microbiology, 6, 441–457.
Perlin, D. S., Rautemaa-Richardson, R., & Alastruey-Izquierdo, A. (2017). The global problem of antifungal resistance: prevalence, mechanisms, and management. The Lancet Infectious Diseases, 17, e383-e392.
Perlroth, J., Choi, B., & Spellberg, B. (2007). Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Medical Mycology, 45, 321–346.
Pfaller, M. A., Diekema, D. J., Gibbs, D. L., Newell, V. A., Ellis, D., Tullio, V., Rodloff, A., Fu, W., Ling, T. A., & the Global Antifungal Surveillance Group. (2010). Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. Journal of Clinical Microbiology, 48, 1366-1377.
Polke, M., Hube, B., & Jacobsen, I. D. (2015). Candida survival strategies. Advances in Applied Microbiology, 91, 139-235.
Poulain, D. (2015). Candida albicans, plasticity and pathogenesis. Critical Reviews in Microbiology, 41(2), 208-217.
Prasad, R., Shah, A. H., & Rawal, M. K. (2016). Antifungals: mechanism of action and drug resistance. Yeast Membrane Transport, p. 327-349.
Pristov, K. E., & Ghannoum, M. A. (2019). Resistance of Candida to azoles and echinocandins worldwide. Clinical Microbiology and Infection, 25(7),792-798.
Rang, H. P., Dale, M. M., Ritter, J. M., & Moore, P. K. (2007). Farmacologia. 6ª edição. Rio de Janeiro: Guabanara, Koogan AS.
Rodrigues, C. F., Rodrigues, M. E., Silva, S., & Henriques, M. (2017). Candida glabrata biofilms: how far have we come? Journal of Fungi, 3, e11.
Ruping, M. J., Vehreschild, J. J., & Cornely, O. A. (2008). Patients at high risk of invasive fungal infections: when and how to treat. Drugs, 68, 1941–1962.
Sanglard, D., Kuchler, K., Ischer, F., Pagani, J. L., Monod, H., & Bille, J. (1995). Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrobial Agents and Chemotherapy, 39, 2378–2386.
Sanglard, D., Ischer, F., Koymans, L., & Bille J. (1998). Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrobial Agents and Chemotherapy, 42(2), 241-253.
Schaller, M., Borelli, C., Korting, H. C., & Hube, B. (2005). Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses, 48(6), 365-377.
Serhan, G, Stack, C. M., Perrone, G. G., & Morton, C. O. (2014). The polyene antifungals, amphotericin B and nystatin, cause cell death in Saccharomyces cerevisiae by a distinct mechanism to amphibian-derived antimicrobial peptides. Annals of Clinical Microbiology and Antimicrobials, 13(1), 18.
Shapiro, R. S., Robbins, N., & Cowen, L. E. (2011). Regulatory circuitry governing fungal development, drug resistance and disease. Microbiology and Molecular Biology Reviews, 75(2), 213-267.
Silva, S., Negri, M., Henriques, M., Oliveira, R., Williams, D. W., & Azeredo, J. (2012). Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS microbiology reviews, 36(2), 288-305.
Silva, S. L., Lima, M. E. de, Santos, R. D. T. dos, & Lima, E. de O. (2020). Onicomicoses por fungos do gênero Candida: uma revisão de literatura. Research, Society and Development, 9(8), e560985771. https://doi.org/10.33448/rsd-v9i8.5771
Sokol-Anderson, M. L., Brajtburg, J., & Medoff, G. (1986). Amphotericin B-induced oxidative damage and killing of Candida albicans. Journal of Infectious Diseases, 154(1), 76-83.
Sudbery, P. E. (2011). Growth of Candida albicans hyphae. Nature Reviews Microbiology, 9(10), 737-748.
Thompson, D. S., Carlisle, P. L., & Kadosh, D. (2011). Coevolution of morphology and virulence in Candida species. Eukaryotic cell, 10(9), 1173-1182.
Vazquez, J. A., Arganoza, M. T., Boikov, D., Yoon, S., Sobel, J. D., & Akins, R. A. (1998). Stable phenotypic resistance of Candida species to amphotericin B conferred by preexposure to subinhibitory levels of azoles. Journal of Clinical Microbiology, 36(9), 2690-2695.
Vázquez‐González, D., Perusquía‐Ortiz, A. M., Hundeiker, M., & Bonifaz, A. (2013). Opportunistic yeast infections: candidiasis, cryptococcosis, trichosporonosis and geotrichosis. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 11(5), 381-394.
Vandeputte, P., Tronchin, G., Berges, T., Hennequin, C., Chabasse, D., & Bouchara, J. P. (2007). Reduced susceptibility to polyenes associated with a missense mutation in the ERG6 gene in a clinical isolate of Candida glabrata with pseudohyphal growth. Antimicrobial Agents and Chemotherapy, 51(3), 982–990.
Vermes, A., Guchelaar, H.-J., & Dankert, J. (2000) Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. Journal of Antimicrobial Chemotherapy, 46(2), 171-179,
Vincent, B. M., Lancaster, A. K., Scherz-Shouval, R., Whitesell, L., & Lindquist S. (2013). Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biology, 11(10), e1001692.
Wani, M. Y., Ahmad, A., Kumar, S., & Sobral, A. J. (2017). Flucytosine analogues obtained through Biginelli reaction as efficient combinative antifungal agents. Microbial Pathogenesis, 105, 57-62.
Xie, J. L., Polvi, E. J., Shekhar-Guturja, T., & Cowen, L. E. (2014). Elucidating drug resistance in human fungal pathogens. Future Microbiology, 9(4), 523-542.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Wilma Raianny Vieira da Rocha; Luanne Eugênia Nunes; Marina Luizy Rocha Neves; Eulália Camelo Pessoa de Azevedo Ximenes; Mônica Camelo Pessoa de Azevedo Albuquerque
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.