Microrganismos no controle biológico do nematoide das galhas das raízes: um estudo metanalítico
DOI:
https://doi.org/10.33448/rsd-v10i6.15209Palavras-chave:
Meloidogyne incognita; Meloidogyne javanica; Microrganismos eficientes; Meta-análise.Resumo
Os nematóides podem causar perdas anuais da ordem de 100 bilhões de dólares em safras em todo o mundo. O controle do nematoide com nematicidas químicos mostra-se bastante agressivo ao meio ambiente. Por esse motivo, o controle por microrganismos tem se mostrado promissor, porém é importante conhecer o potencial de controle de cada microrganismo. Assim, o objetivo deste estudo foi verificar a eficiência de diferentes microrganismos no controle biológico de Meloidogyne sp. Foi realizada uma revisão sistemática da literatura de 2000 a 2020 com as palavras-chave “Meloidogyne and biology control” resultando em um total de 659 artigos, dos quais 51 foram pré-selecionados e, após avaliação mais detalhada, foram considerados 10 artigos publicados. Um total de 83 estudos foram considerados para meta-análises, com cada estudo incluindo um grupo de tratamento que consistia no uso de algum microrganismo (bactérias, fungos, actinomicetos) para o biocontrole de nematóides e um grupo controle sem o uso de agentes de biocontrole. A partir dessa meta-análise pode-se verificar que o uso de microrganismos diminuiu o número de galhas (42,05%), o número de ovos (57,77%), o índice de galhas (28,58%) e a massa dos ovos (53,48%). O uso de microrganismos também foi positivo no aumento da massa radicular (832,89%). Pode-se concluir que o uso de microrganismos se mostrou eficiente no controle dos nematóides M. javanica e M. incognita. Os fungos Pleurotus ostreatus e Phanerochaete chrysosporium apresentam maior potencial de biocontrole para essas espécies.
Referências
Abbasi, A. A. H., & Sharf, R. (2011). Antagonistic effects of Pseudomonas fuorescens and Bacillus subtilis on Meloidogyne incognita infecting Vigna mungo L. International Journal of Plant, Animal and Environmental Sciences 2, 55–63.
Affokpon, A., Coyne, D. L., Htay, C. C., Agbèdè, R. D., Lawouin, L., & Coosemans, J. (2011). Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biology and Biochemistry, 43, 600–608. https://doi.org/10.1016/j.soilbio.2010.11.029
Alvarado-Herrejón, M., Larsen, J., Gavito, M. E., Jaramillo-López, P. F., Vestberg, M., Martínez-Trujillo, M., & Carreón-Abud, Y. (2019). Relation between arbuscular mycorrhizal fungi, root-lesion nematodes, and soil characteristics in maize agroecosystems. Applied Soil Ecology, 135, 1–8. https://doi.org/10.1016/j.apsoil.2018.10.019
Araújo, F. F. de & Marchesi, G. V. P. (2009). Uso de Bacillus subtilis no controle da meloidoginose e na promoção do crescimento do tomateiro. Ciência Rural 39(5), 1558–1561.
Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
Beeman, A. Q., Njus, Z. L., Pandey, S., & Tylka, G. L. (2019). The effects of ILeVO and VOTiVO on root penetration and behavior of the soybean cyst nematode, Heterodera glycines. Plant Disease Journal, 103, 392–397. https://doi.org/10.1094/PDIS-02-18-0222-RE
Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260. https://doi.org/10.2436/im.v7i4.9480
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. John Wiley & Sons.
Cannayane, I., & Rajendran, G. (2001). Application of biocontrol agents and oil cakes for the management of Meloidogyne incognita in brinjal (Solanum melongena L.). Current Nematology, 12, 51-55.
Carneiro, R. M. D. G., Souza, I. S., & Belarmino, L. C. (1998). Nematicidal Activity of Bacillus spp. Strains on juveniles of Meloidogyne javanica. Nematologia Brasileira, 22, 12–21.
Carraro-Lemes, C. F., Deuner, C. C., Scheffer-Basso, S. M., & Mazzetti, V. C. G. (2020). Reaction of Avena spp. to different concentration levels of Meloidogyne javanica and M. incognita inoculum. Australian Journal of Crop Science, 14, 196–203. https://doi.org/10.21475/ajcs.20.14.01.p1960
Chen, S., & Dickinson, D. W. (2004). Biological control of nematodes with bacterial antagonists. In: Chen, Z., Chen, S. & Dickinson, D. W. (Eds). Nematology – advances and perspectives, v. 2: Nematode Management and utilization. Tsinghua University Press and CABI Publishing, 1041-1082.
Chet, I., Inbar, J., & Hadar, Y. (1997). Fungal antagonists and mycoparasitism. In: Wicklow, D. T. & Söderström, B. (Eds.), The Mycota. Environmental and microbial relationships, Springer-Verlag, 4, 165-184.
Chiellini, C. Cardelli, V., De Feudis, M., Corti, G., Cocco, S., Agnelli, A., Massaccesi, L., Alessi, G. D., Mengoni, A., & Mocali, S. (2019). Exploring the links between bacterial communities and magnetic susceptibility in bulk soil and rhizosphere of beech (Fagus sylvatica L.). Applied Soil Ecology, 138, 69–79. https://doi.org/10.1016/j.apsoil.2019.02.008
Choi, T. G., Maung, C. E. H., Lee, D. R., Henry, A. B., Lee, Y. S., & Kim, K. Y. (2020). Role of bacterial antagonists of fungal pathogens, Bacillus thuringiensis KYC and Bacillus velezensis CE 100 in control of root-knot nematode, Meloidogyne incognita and subsequent growth promotion of tomato. Biocontrol Science and Technology, 30, 685–700. https://doi.org/10.1080/09583157.2020.1765980
Cochran, W. G. (1954). The Combination of Estimates from Different Experiments. Biometrics 10, 101. https://doi.org/10.2307/3001666
Coyne, D. L., Cortada, L., Dalzell, J. J., Claudius-Cole, A. O., Haukeland, S., Luambano, N., & Talwana, H. (2018). Plant-Parasitic Nematodes and Food Security in Sub-Saharan Africa. Annual Review of Phytopathology, 56, 381–403. https://doi.org/10.1146/annurev-phyto-080417
Dallemole-Giaretta, R., Freitas, L. G., Zooca, R. J. F., Podestá, G. S., Caixeta, L. B., Ferraz, S., & Lopes, E. A. (2010). Associação de Pochonia chlamydosporia, Bacillus cereus e fibra de coco no controle de Meloidogyne javanica em tomateiro. Nematologia Brasileira, 34, 18-22.
Du, B., Xu, Y., Dong, H., Li, Y., &Wang, J. (2020). Phanerochaete chrysosporium strain B-22, a nematophagous fungus parasitizing Meloidogyne incognita. PLOS ONE 15, 1–14. https://doi.org/10.1371/journal.pone.0216688
Duval, S. J., & Tweedie, R. L. (2000a). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463.
Duval, S. J., & Tweedie, R. L. (2000b). A nonparametric "trim and fill" method of accounting for publication bias in meta-analysis. Journal of the American Statistical Association, 95(449), 89–98.
Duval, S. J. (2005). The trim and fill method. In: Rothstein, H. R., Sutton, A. J., & Borenstein, M. (Eds.). Publication bias in meta-analysis: Prevention, assessment, and adjustments. Chichester, England: Wiley, 127–144
Eapen, S. J., Beena, B., & Ramana, K. V. (2005). Tropical soil microflora of spice-based cropping systems as potential antagonists of root-knot nematodes. Journal of Invertebrate Pathology, 88, 218–225. https://doi.org/10.1016/j.jip.2005.01.011
Ferraz, S., Freitas, L. G., Lopes, E. A., & Dias-Arieira, C. R. (2010). Manejo sustentável de fitonematoides, Editora UFV.
Fabry, C. F. S., Freitas, L. G., Neves, W. S., Coutinho, M. M., Tótola, M. R., Oliveira, J. R., Dallemole-Giaretta, R., & Ferraz, S. (2007). Obtenção de Bactérias para a o Biocontrole de Meloidogyne javanica por Meio de Aquecimento de Solo e Tratamento com Filtrado de Raízes de Plantas Antagonistas a Fitonematóides. Fitopatologia Brasileira, 32, 79–82. https://doi.org/10.1590/s0100-41582007000100013
Fernandes, R. H., Lopes, E. A., Bontempo, A. F., Fuga, C. A. G., & Vieira, B. S. (2018). Bacillus spp. Isolates for the control of Meloidogyne incognita in common bean. Cientifica 46, 235–240. https://doi.org/10.15361/1984-5529.2018v46n3p235-240
Fernandes, R. H., Lopes, E. A., Vieira, B. S., & Amanda, F. (2013). Controle de Meloidogyne javanica na Cultura do Feijoeiro com Isolados de Bacillus spp. control of Meloidogyne javanica on common beans with Bacillus spp . isolates. Revista Trópica: Ciências Agrárias e Biológicas, 7, 76–81.
Fernandes, R. H., Vieira, B. S., Fuga, C. A. G., & Lopes, E. A. (2014). Pochonia chlamydosporia e Bacillus subtilis no controle de Meloidogyne incognita e M. javanica em mudas de tomateiro. Bioscience Journal, 30, 194–200.
Fosu-Nyarko, J., & Jones, M. G. K. (2015). Application of biotechnology for nematode control in crop plants. Advances in Botanical Research. Elsevier Ltd. https://doi.org/10.1016/bs.abr.2014.12.012
Freitas, L.G., Neves, W. S., Fabry, C. F. S., Marra, B. M., Coutinho, M. M., Romeiro, R. S., & Ferraz, S. (2005). Isolamento e seleção de rizobactérias para controle de nematoides formadores de galhas (Meloidogyne spp.) na cultura do tomateiro. Nematologia Brasileira, 29, 215-220.
Godefroid, M., Tixier, P., Chabrier, C., Djigal, D., & Quénéhervé, P. (2017). Associations of soil type and previous crop with plant-feeding nematode communities in plantain agrosystems. Applied Soil Ecology, 113, 63–70. https://doi.org/10.1016/j.apsoil.2017.01.012
Griffits, B. S., Bengough, A.G., Nielson, R., & Trudgill, D. L. (2002). The extent to which nematode communities are affected by soil factors - A pot experiment. Nematology, 4, 943–952. https://doi.org/10.1163/156854102321122566
Gurevitch, J., & Hedges, L. V. (1999). Statistical issues in ecological meta-analysis. Ecology, 80, 1142–1149. https://doi.org/10.1890/0012-9658(1999)080[1142:SIIEMA]2.0.CO;2
Hallman, J., Davies, K. G., & Sikora, R. (2009). Biological control using microbial pathogens, endophytes and antagonists. In: Perry, R. N., Moens, M., & Starr, J. L. (Eds.). Root-knot nematodes. CAB International, 380-411.
Harrier, L. A., & Watson, C. A. (2004). The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Management Science, 60, 149–157. https://doi.org/10.1002/ps.820
Harrier, L. A., Watson, C. A., Prasetiya dan Niken, Cofcewicz, E. T., Medeiros, C. A. B., Carneiro, R. M. D. G., Pierobom, C. R., Veresoglou, S. D., Chen, B., Rillig, M. C., Smith, S. E., Read, D., Gianinazzi, S., Gollotte, A., Binet, M. N., Van Tuinen, D., Redecker, D., & Wipf, D. (2012). Mycorrhizas in ecological interactions, 8, 53–62. https://doi.org/10.1007/s00572-010-0333-3
Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology. https://doi.org/10.1890/0012-9658(1999)080 [1150: TMAORR] 2.0.CO;2
Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21, 1539–1558. https://doi.org/10.1002/sim.1186
Hol, W. H. G., & Cook, R. (2005). An overview of arbuscular mycorrhizal fungi-nematode interactions. Basic and Applied Ecology, 6, 489–503. https://doi.org/10.1016/j.baae.2005.04.001
Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87, 4-10.
Hu, J., Hussain, M., Zhang, X., Tian, J., Liu, X., Duan, Y., & Xiang, M. (2019). Abundant and diverse fungal microbiota inhabit the white females and brown cysts of the cereal cyst nematode. Applied Soil Ecology. 147, 103372. https://doi.org/10.1016/j.apsoil.2019.103372
Huang, K., Jiang, Q., Liu, L., Zhang, S., Liu, C., Chen, H., Ding, W., & Zhang, Y. (2020). Exploring the key microbial changes in the rhizosphere that affect the occurrence of tobacco root-knot nematodes. AMB Express, 10. https://doi.org/10.1186/s13568-020-01006-6
Ibrahim, H. M. M. M., Ahmad, E. M., Martínez-Medina, A., & Aly, M. A. M. M. (2019). Effective approaches to study the plant-root knot nematode interaction. Plant Physiology and Biochemistry, 141, 332–342. https://doi.org/10.1016/j.plaphy.2019.06.009
Inomoto, M. M. (2016). Técnicas clássicas da diagnose de fitonematoides. In: Oliveira, C. M.G., Santos, M. A., Castro, L. H. S. Diagnose de fitonematoides. Millenium, 368p.
Kossmeier, M., Ulrich S. T., & Voracek, M. (2020). Metaviz: Forest Plots, Funnel Plots, and Visual Funnel Plot Inference for Meta-Analysis. R package version 0.3.1. https://CRAN.R-project.org/package=metaviz
Lazaretti, E., & Bettiol, W. (1997). Tratamento de sementes de arroz, trigo, feijão e soja com um produto formulado a base de células e de metabólitos de Bacillus subtilis. Scientia Agrícola, 54, 89-96.
Liu, G., Lin, X., Xu, S., Liu, G., Liu, F., & Mu, W. (2020). Screening, identification, and application of soil bacteria with nematicidal activity against root-knot nematode (Meloidogyne incognita) on tomato. Pest Management Science, 76, 2217–2224. https://doi.org/10.1002/ps.5759
Lopes, E. A., Ferraz, S., Ferreira, P. A., Freitas, L. G., Dhingra, O. D., Gardiano, C. G., Carvalho, S. L., & Carvalho, S. L. (2007). Potencial de isolados de fungos nematófagos no controle de Meloidogyne javanica. Nematologia Brasileira, 31, 20–26.
Luambano, N. D., Manzanilla-López, R. H., Powers, S. J., Wanjohi, W. J., Kimenju, J. W. & Narla, R. D. (2019). Screening of locally available organic materials as substrates for the production of Pochonia chlamydosporia in Kenya. Biological Control – Journal, 133, 18–25. https://doi.org/10.1016/j.biocontrol.2019.03.001
Machado, V., Berlitz, D. L., Santos Matsumura, A. T., Santin, R. C. M., Guimarães, A. S. M. E., & Fiuza, L. M. (2012). Bactérias Como Agentes de Controle B,iológico de Fitonematóides. Oecologia Australis, 16, 165–182. https://doi.org/10.4257/oeco.2012.1602.02
Marlin, M., Wolf, A., Alomran, M., Carta, L. & Newcombe, G. (2019). Nematophagous Pleurotus species consume some nematode species but are themselves consumed by others. Forests, 10, 1–11. https://doi.org/10.3390/f10050404
Mazzuchelli, R. C. L., Mazzuchelli, E. H. L. & Araujo, F. F. (2020). Efficiency of Bacillus subtilis for root-knot and lesion nematodes management in sugarcane. Biological Control – Journal, 143, 104185. https://doi.org/10.1016/j.biocontrol.2020.104185
McSorley, R., & Frederick, J. J. (2002). Effect of subsurface clay on nematode communities in sandy soil. Applied Soil Ecology, 19, 1–11. https://doi.org/10.1016/S0929-1393(01)00167-6
McSorley, R., Wang, K. H., & Church, G. (2008). Suppression of root-knot nematodes in natural and agricultural soils. Applied Soil Ecology, 39, 291–298. https://doi.org/10.1016/j.apsoil.2008.01.002
Melo, I. S. E., & Azevedo, J. L. (2000). Controle Biológico. Jaguariúna: EMBRAPA Meio Ambiente, 388p.
Moazezikho, A.; Charehgani, H.; Abdollahi, M., & Rezaei, R (2020). Evidence of the inhibitory effect of Pseudomonas fluorescens CHA0 and aqueous extracts on tomato plants infected with Meloidogyne javanica (Tylenchida: Heteroderidae). Egyptian Journal of Biological Pest Control, 30. https://doi.org/10.1186/s41938-020-00217-0
Nagesh M. J. A., Veed, S., Ramanujam, B., & Rangeswaran, R. (2013). Suitability of soil types for Paecilomyces lilacinus and Pochonia chlamydosporia and their performance against root-knot nematode, Meloidogyne incognita on Lycopersicon esculentum in the glasshouse. Indian Journal of Agricultural Sciences, 83, 826–830.
Nimnoi, P., & Ruanpanun, P. (2020). Suppression of root-knot nematode and plant growth promotion of chilli (Capsicum flutescens L.) using co-inoculation of Streptomyces spp. Biological Control, 145, 104244.
Raj, S., Bhimrao, V. B., Arora, N., & Singh, S. (2017). Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review Environmental Sustainability View Project Special Issue “Endophytes for Managing Biotic and Abiotic Stress in Plants” View project. Pedosphere, 27, 177–192. https://doi.org/10.1016/S1002-0160(17)60309-6
Roberts, D. P., Lohrke, S. M., Meyer, S. L. F., Buyer, J. S., Bowers, J. H., Baker, C. J., Li, W., De Souza, J. T., Lewis, J. A., & Chung, S. (2005). Biocontrol agents applied individually and in combination for suppression of soil-borne diseases of cucumber. Crop Protection, 24, 141–155. https://doi.org/10.1016/j.cropro.2004.07.004
Rosenberg, M. S., Adams, D. C., & Gurevitch, J. (2000). MetaWin: statistical software for meta-analysis. Version 2.1.3.4, Sinauer Associates, Sunderland, Massachusetts.
Ruanpanun, P., Tangchitsomkid, N., Hyde, K. D., & Lumyong, S. (2010). Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: Screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 26, 1569–1578. https://doi.org/10.1007/s11274-010-0332-8
Sandoval, N. S. E., Guadalupe, M. M. E., Nakayo, J. L. J., Reyes, H. A. L., Córdova, V. A. L., Ocaña, J. C. M., & Chunata, N. M. I. (2020). Effect of Pleurotus ostreatus (Jacq.) and Trichoderma harzianum (rifai) on Meloidogyne incognita (kofoid & white) in tomato (Solanum lycopersicum mill.). Acta Scientiarum. Biological Sciences, 42, 1–8. https://doi.org/10.4025/actascibiolsci.v42i1.47522
Schouteden, N., Waele, D. D., Panis, B., & Vos, C. M. (2015). Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: A review of the mechanisms involved. Frontiers in Microbiology, 6, 1–12. https://doi.org/10.3389/fmicb.2015.01280
Siddiqui, I. A., Shaukat, S. S., Sheikh, I. H., & Khan, A. (2006). Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode Meloidogyne javanica in tomato. World Journal of Microbiology and Biotechnology, 22, 641–650.
Sikora, R. A., Pocasangre, L., Felde, A. Z., Niere, B., Vu, T. T., & Dababat, A. A. (2008). Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biological Control, 46, 15–23. https://doi.org/10.1016/j.biocontrol.2008.02.011
Sohrabi, F., Sheikholeslami, M., Heydari, R., Rezaee, S., & Sharifi, R. (2020). Investigating the effect of Glomus mosseae, Bacillus subtilis and Trichoderma harzianum on plant growth and controlling Meloidogyne javanica in tomato. Indian Phytopathology, 73, 293–300. https://doi.org/10.1007/s42360-020-00227-w
Sohrabi, F., Sheikholeslami, M., Heydari, R., Rezaee, S., & Sharifi, R. (2018). Evaluation of four rhizobacteria on tomato growth and suppression of root-knot nematode, Meloidogyne javanica under greenhouse conditions, a pilot study. Egyptian Journal of Biological Pest Control, 28, 1–5. https://doi.org/10.1186/s41938-018-0059-7
Sohrabi, F., Fadaei-Tehrani, A. A., & Danesh,Y., R. (2015). Study on the chitinase changes in interaction of arbuscular mycorrhizal fungus (Glomus mosseae) and root-knot nematode (Meloidogyne javanica) on tomato. Journal Plant Protection, 29, 349–356. https://doi.org/10.22067/JPP.V29I3.31791
Strom, N., Hu, W., Haarith, D., Chen, S., & Bushley, K. (2020). Interactions between soil properties, fungal communities, the soybean cyst nematode, and crop yield under continuous corn and soybean monoculture. Applied Soil Ecology. 147. 103388. https://doi.org/10.1016/j.apsoil.2019.103388
Tsai, A. Y. L., Higaki, T., Nguyen, C. N., Perfus-Barbeoch, L., Favery, B., & Sawa, S. (2019). Regulation of Root-Knot Nematode Behavior by Seed-Coat Mucilage-Derived Attractants. Molecular Plant, 12, 99–112. https://doi.org/10.1016/j.molp.2018.11.008
Vaz, M. V., Canedo, E. J., Vieira, B. S., & Lopes, E. A. (2011). Controle biológico de Meloidogyne javanica e Meloidogyne incognita com Bacillus subtilis. Perquirere. 8, 203-212.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1-48.
Vimal, S. R., Singh, J. S. Arora, N. K., & Singh, S. (2017). Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere, 27, 177–192.
Vos, C., Claerhout, S., Mkandawire, R., Panis, B., Waele, D., & Elsen, A. (2012). Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil, 354, 335–345. https://doi.org/10.1007/s11104-011-1070-x
Vos, C. M., Tesfahun, A. N., Panis, B., De Waele, D., & Elsen, A. (2012). Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Applied Soil Ecology, 61, 1–6. https://doi.org/10.1016/j.apsoil.2012.04.007
Waele, K.U., & Leuven, D. D. (2006). Banana Rhizodeposition: Characterization of root border cell production and effects on chemotaxis and motility of the parasitic nematode Radopholus similis. Plant Soil, 283, 217–228. https://doi.org/10.1007/s11104-006-0013-4
Watson, T. T.; Strauss, S. L., & Desaeger, J. A. (2020). Identification and characterization of Javanese root-knot nematode (Meloidogyne javanica) suppressive soils in Florida. Applied Soil Ecology, 154, 103597. https://doi.org/10.1016/j.apsoil.2020.103597
Wei, B. Q., Xue, Q. Y., Wei, L. H., Niu, D. D., Liu, H. X., Chen, L. F., & Guo, J. H. (2009). A novel screening strategy to identify biocontrol fungi using protease production or chitinase activity against Meloidogyne root-knot nematodes. Biocontrol Science and Technology, 19, 859–870. https://doi.org/10.1080/09583150903165636
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
Wesemael, W. M. L., Viaene, N., & Moens, M. (2011). Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology, 13, 3–16. https://doi.org/10.1163/138855410X526831
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
Whipps, J. M. (2004). Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany, 82, 1198–1227. https://doi.org/10.1139/B04-082
Zhao, D., Zhao, H., Zhao, D., Zhu, X., Wang, Y., Duan, Y., Xuan, Y., & Chen, L. (2018). Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biological Control, 119, 12–19. https://doi.org/10.1016/j.biocontrol.2018.01.004
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Tatiana Benedetti; Jaqueline Huzar-Novakowiski; Elisangela Sordi; Ivan Ricardo Carvalho; Edson Campanhola Bortoluzzi
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.