Análise do fluxo de resina durante a fabricação de compósitos GFRP via RTM contendo insertos impermeáveis embebidos
DOI:
https://doi.org/10.33448/rsd-v10i6.15362Palavras-chave:
Materiais compósitos; RTM; Inserts embebidos.Resumo
O objetivo deste trabalho é analisar o fluxo de resina durante a fabricação de compósitos GFRP (Glass Fiber Reinforced Polymer) via RTM (Resin Transfer Molding) contendo insertos impermeáveis embebidos. Os compósitos foram processados com inserts impermeáveis de polietileno de alta densidade embebidos via RTM. O sistema de processamento foi montado de forma que a análise digital da imagem do fluxo durante e após o processamento pudesse ser realizada. Amostras para ensaios de flexão em três pontos foram cortadas das placas e suas superfícies fraturadas foram analisadas por fratografia ótica. Os resultados indicam que a presença dos inserts bloquearam o fluxo transversal de resina dificultando o molhamento completo das fibras, o que levou a uma espessura da placa não uniforme. Regiões ricas em resina próximas as laterais dos inserts foram observadas. A análise do modo de falha dos compósitos através do ensaio de flexão em três pontos mostrou delaminação das fibras por tensão de cisalhamento tipo II, descolagem entre a interface fibra/matriz e o insert, e fratura do compósito com propagação da trinca através da região rica em resina.
Referências
Agnes, E. A., & Hilling, E. (2020). Propriedades físico-mecânicas de compósitos polímero-fibra produzido por moldagem prensada. Research, Society and Development, 9(8). http://dx.doi.org/10.33448/rsd-v9i8.5063.
Ahmed, A., Fahim, A., & Naguib, H. E. (2010). Load bearing properties of three-component polymer composites. Polymer composites, 31, 1731-1737. https://doi.org/10.1002/pc.20963.
Ahmed, A., Fahim, A., & Naguib, H. E. (2011). A study on the anchoring orientations of foam and sandwich composites with metal. Polymer Composites, 32, 596-603. https://doi.org/10.1002/pc.21070.
Amorim Jr., W. F. (2007). Processamento de placa espessa de compósito através de moldagem por transferência de resina. PhD thesis, Universidade Federal do Rio de Janeiro.
Aranha, R. (2017). Estudo do processamento de materiais compósitos com inserts impermeáveis embebidos via RTM. Master thesis, Universidade Federal de Campina Grande.
ASTM D7264/D7264M-15, Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, 2015.
Batista, S. S., Souza, L. G. M., Bezerra, D. M. L., & Neto, R. V. P. (2020). Viabilities for obtaining, manufacturing and applying composites using bamboo powders and ophthalmic lens waste. Research, Society and Development, 9(9). http://dx.doi.org/10.33448/rsd-v9i9.7455.
Chen, B., Lang, E. J., & Chou, T.W. (2001). Experimental and theoretical studies of fabric compaction behavior in resin transfer molding. Materials Science and Engineering: A, 317, 188-196. https://doi.org/10.1016/S0921-5093(01)01175-3.
Chizari, K., Arjmand, M., Liu, Z., Sundararaj, U., & Therriault, D. (2017). Three-dimensional printing of highly conductive polymer nanocomposites for emi shielding applications. Materials Today Communications, 11, 112-118. https://doi.org/10.1016/j.mtcomm.2017.02.006.
Etches, J. A., & Fernando, G. F. (2009). Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation. Polymer Composites, 30, 1265-1274. https://doi.org/10.1002/pc.20690.
Gauvin, R., Trochu, F., Lemenn, Y., & Diallo, L. (1996). Permeability measurement and flow simulation through fiber reinforcement. Polymer composites, 17, 34-42. https://doi.org/10.1002/pc.10588.
Gebhardt, J., & Fleischer, J. (2014). Experimental investigation and performance enhancement of inserts in composite parts. Procedia CIRP, 23, 7-12. https://doi.org/10.1016/j.procir.2014.10.084.
Hammami, A., Gauvin, R., & Trochu, F. (1998). Modeling the edge effect in liquid composites molding. Composites Part A: applied science and manufacturing, 29, 603-609. https://doi.org/10.1016/S1359-835X(97)00120-6.
Hanu, L., Simon, G., Mansouri, J., Burford, R., & Cheng, Y. (2004). Development of polymer-ceramic composites for improved fire resistance. Journal of materials processing technology, 153, 401-407. https://doi.org/10.1016/j.jmatprotec.2004.04.104.
Jhan, Y. T., Lee, Y. J., & Chung, C. H. (2011). Resin flowing analysis in sandwich laminates under VARTM process. Journal of Reinforced Plastics and Composites, 30, 533–545. https://doi.org/10.1177/0731684411399142.
Kim, H., Myounggu, P., & Hsieh, K. (2006). Fatigue fracture of embedded copper conductors in multifunctional composite structures. Composite Science and Technology, 66, 1010-1021. https://doi.org/10.1016/j.compscitech.2005.08.007.
Lacasse, S., Terriault, P., Simoneau, C., & Brailovski, V. (2015). Design, manufacturing, and testing of an adaptive composite panel with embedded shape memory alloy actuators. Journal of Intelligent Material Systems and Structures, 26, 2055-2072. https://doi.org./10.1177/1045389X14549862.
Lawrence, J. M., Frey, P., Obaid, A. A., Yarlagadda, S., & Advani, S. G. (2007). Simulation and Validation of Resin Flow During Manufacturing of Composite Panels Containing Embedded Impermeable Inserts with the VARTM Process. Polymer Composites, 28, 442-450. https://doi.org/10.1002/pc.20293.
Lee, C. H., Kim, C. W., Yang, S. U., & Ku, B. M. (2007). A development of integral composite structure for the ramp of infantry fighting vehicle. 23º International Symposis on Ballistics Tarragona.
Liu, B., Bickerton, S., & Advani, S. G. (1996). Modelling and simulation of resin transfer moulding (rtm)-gate control, venting and dry spot prediction. Composites Part A: applied science and manufacturing, 27, 135-141. https://doi.org/10.1016/1359-835X(95)00012-Q.
Madhi, S. et al. (2003). Effect of the manufacturing process on the interfacial properties and structural perfomance of multi-functional composite structures. Composites Part A: applied science and manufacturing, 34, 635-647. https://doi.org/10.1016/S1359-835X(03)00091-5.
Naik, N. K., Rao, N., Agarwal, U., Raju, K. A., Pottigar, S. A., & Suresh, V. (2009). Sandwich structures with composite inserts: experimental studies. Polymer Composites, 30, 639-648. https://doi.org/10.1002/pc.20600.
Obaid, A. A., & Yarlagadda, S. (2008). Structural performance of the glass fiber-vinyl ester composites with interlaminar copper inserts. Composites: Part A: applied science and manufacturing, 39 195-203. https://doi.org/10.1016/j.compositesa.2007.11.006.
Pappada, S., Rametta, R., Largo, A., & Maffezzoli, A. (2012). Low-velocity impact response in composite plates embedding shape memory alloy wires. Polymer Composites, 33, 655-664. https://doi.org/10.1002/pc.22170.
Simoneau, C., Terriault, P., Lacasse, S., & Brailovski, V. (2014). Adaptive composite panel with embedded SMA actuators: modeling and validation. Mechanics Based Design of Structures and Machines, 42, 174-192. https://doi.org/10.1080/ 15397734.2013.864246.
Souza, N. S., Felipe, R. C. T. S., Felipe, R. N. B., & Lima, N. L. P. (2020). Resíduos sólidos industriais: compósito com resíduos de plástico reforçado com fibra de vidro. Research, Society and Development, 9(9). http://dx.doi.org/10.33448/rsd-v9i9.7136.
Sozer, E., Simacek, P., & Advani, S. (2012). Resin transfer molding (rtm) in polymer matrix composites. Manufacturing techniques for polymer matrix composites (PMCs), 245-309. https://doi.org/10.1533/9780857096258.3.243.
Steeves, C. A., & Fleck, N. A. (2006). In-plane properties of composite laminates with through-thickness pin reinforcement. International Journal of Solids and Structures, 43, 3197–3212. https://doi.org/10.1016/j.ijsolstr.2005.05.017.
Thakur, A., & Dong, X. (2020). Printing with 3D continuous carbon fiber multifunctional composites via UV-assisted coextrusion deposition. Manufacturing Letters, 24, 1-5. https://doi.org/10.1016/j.mfglet.2020.02.001.
Xiao, Y., Oiao, W., Fukuda, H., & Hatta, H. (2016). The effect of embedded devices on structural integrity of composite laminates. Composites Structures, 153, 21-29. https://doi.org/10.1016/j.compstruct.2016.06.007.
Wang, Q., Chen, Z., & Chen, Z. (2013). Design and characteristics of hybrid composite armor subjected to projectile impact. Materials and Design, 46, 634-639. https://doi.org/10.1016/j.compstruct.2016.06.007.
Zhao, D. (2011). Study of a new manufacturing for multi-functional composite structures with aerosol-jet printing. Master thesis, Florida State University.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Rudá Aranha; Laura Hecker de Carvalho; Wanderley Ferreira de Amorim Junior
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.