Caracterização da corrosão da liga experimental Ti-35Nb-7Zr-5Ta por técnicas eletroquímicas
DOI:
https://doi.org/10.33448/rsd-v10i6.15861Palavras-chave:
Titanium alloys; Biomaterials; Electrochemical techniques; Corrosion; Osseointegration.Resumo
O objetivo do presente estudo foi avaliar a resistência à corrosão da liga experimental
Ti-35Nb-7Zr-5Ta, modificada por feixe de laser, em uma solução fisiológica de NaCl a 0,9%. Esta avaliação foi realizada por análise de potencial de circuito aberto (EOCP), curvas de polarização potenciodinâmica e curvas de polarização cíclica. As curvas de potencial de circuito aberto mostram que a amostra irradiada por feixe de laser a 35 Hz apresentou uma superfície mais estável e resistente a corrosão. Observou-se nas curvas de polarização, baixas densidades de corrente na ordem de nA/ cm2, para todas as amostras indicando um comportamento passivo esperado para a liga investigada. As curvas de polarização cíclica mostram que para as amostras tratadas a laser o potencial de repassivação (Er) é maior em relação ao potencial de corrosão (Ecorr), o que indica uma maior resistência a corrosão das ligas metálicas quando tratadas a laser.
Referências
Chai, Y. W., Kim, H. Y., Hosoda, H., & Miyazaki, S. (2008). Interfacial defects in Ti-Nb shape memory alloys. Acta Materialia, 56(13), 3088–3097. https://doi.org/10.1016/j.actamat.2008.02.045
Chen, J., Rungsiyakull, C., Li, W., Chen, Y., Swain, M., & Li, Q. (2013). Multiscale design of surface morphological gradient for osseointegration. Journal of the Mechanical Behavior of Biomedical Materials, 20, 387–397. https://doi.org/10.1016/j.jmbbm.2012.08.019
De Assis, S. L., Wolynec, S., & Costa, I. (2006). Corrosion characterization of titanium alloys by electrochemical techniques. Electrochimica Acta, 51(8–9), 1815–1819. https://doi.org/10.1016/j.electacta.2005.02.121
Filho, E. D. A., Fraga, A. F., Bini, R. A., & Guastaldi, A. C. (2011). Bioactive coating on titanium implants modified by Nd:YVO 4 laser. Applied Surface Science, 257(10), 4575–4580. https://doi.org/10.1016/j.apsusc.2010.12.056
Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Progress in Materials Science, 54(3), 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004
Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., & Yashiro, T. (1998). Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering A, 243(1–2), 244–249. https://doi.org/10.1016/s0921-5093(97)00808-3
Laurindo, C A H; Lepienski, C A; Amorim, F L; Torres, R D; Soares, P. (2018). Mechanical and Tribological Properties of Ca/P-Doped Titanium Dioxide Layer Produced by Plasma Electrolytic Oxidation: Effects of Applied Voltage and Heat Treatment. Tribology Transactions, 61(4), 733–741. https://doi.org/https://doi.org/10.1080/10402004.2017.1404176
Lopes, C. S., Donato, M., & Ramgi, P. (2016). Comparative corrosion behavior of titanium alloys (ti-15mo and ti-6al-4v) for dental implants applications: A review. Corrosão e Protecção de Materiais, 35(2), 05–14. https://doi.org/10.19228/j.cpm.2016.35.04
López, M. F., Gutiérrez, A., & Jiménez, J. A. (2001). Surface characterization of new non-toxic titanium alloys for use as biomaterials. Surface Science, 482–485(PART 1), 300–305. https://doi.org/10.1016/S0039-6028(00)01005-0
Metikoš-Huković, M., Kwokal, A., & Piljac, J. (2003). The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials, 24(21), 3765–3775. https://doi.org/10.1016/S0142-9612(03)00252-7
Mish, C. E. (2000). Implantes Dentais Contemporâneos. Pancast.
Mohammed, M. T., Khan, Z. A., Geetha, M., & Siddiquee, A. N. (2015). Microstructure, mechanical properties and electrochemical behavior of a novel biomedical titanium alloy subjected to thermo-mechanical processing including aging. Journal of Alloys and Compounds, 634, 272–280. https://doi.org/10.1016/j.jallcom.2015.02.095
Niinomi, M; Kuroda, D; Fukunaga, K I; Morinaga, M; Kato, Y; Yashiro, T; Suzuki, A. (1999). Corrosion wear fracture of new b type biomedical titanium alloys. Materials Science and Engineering A, 263(2), 193–199. https://doi.org/10.1016 / S0921-5093 (98) 01167-8
Paital, S. R., & Dahotre, N. B. (2009). Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Materials Science and Engineering R: Reports, 66(1–3), 1–70. https://doi.org/10.1016/j.mser.2009.05.001
Queiroz, T. P., Souza, F. Á., Guastaldi, A. C., Margonar, R., Garcia-Júnior, I. R., & Hochuli-Vieira, E. (2013). Commercially pure titanium implants with surfaces modified by laser beam with and without chemical deposition of apatite. Biomechanical and topographical analysis in rabbits. Clinical Oral Implants Research, 24(8), 896–903. https://doi.org/10.1111/j.1600-0501.2012.02471.x
Rodrigues, A. V., Oliveira, N. T. C., dos Santos, M. L., & Guastaldi, A. C. (2015). Electrochemical behavior and corrosion resistance of Ti–15Mo alloy in naturally-aerated solutions, containing chloride and fluoride ions. Journal of Materials Science: Materials in Medicine, 26(1), 1–9. https://doi.org/10.1007/s10856-014-5323-0
Rungsiyakull, C., Li, Q., Sun, G., Li, W., & Swain, M. V. (2010). Surface morphology optimization for osseointegration of coated implants. Biomaterials, 31(27), 7196–7204. https://doi.org/10.1016/j.biomaterials.2010.05.077
Santos, L. D. B., Maria, T., Freire, V., Sampaio, N. D. M., & Oliveira, A. S. de. (2007). Aspectos biomecânicos das próteses sobre im- plantes Biomechanics aspects of the implant-supported pros- theses. 6(1), 13–18.
Silva, F. S. d., Bedoya, J., Dosta, S., Cinca, N., Cano, I. G., Guilemany, J. M., & Benedetti, A. V. (2017). Corrosion characteristics of cold gas spray coatings of reinforced aluminum deposited onto carbon steel. Corrosion Science, 114, 57–71. https://doi.org/10.1016/j.corsci.2016.10.019
Trivinho-Strixino, F; Santos, J S; Sikora, M. S. (2017). Electrochemical Synthesis of Nanostructured Materials. Nanostructures, 53–103. https://doi.org/https://doi.org/10.1016/B978-0-323-49782-4.00003-6
Valente, C. B. M. (2017). Estudo do Comportamento Mecânico de uma Liga de Titânio-Tântalo, Ti10Ta, Produzida por LASER Cladding [Universidade Nova de Lisboa]. http://hdl.handle.net/10362/27686
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Ana Elisa Vilicev Italiano; Daniela Vieira Amantéa; Fernando Santos da Silva; Leandro Fernandes; Márcio Luiz dos Santos; Luís Geraldo Vaz
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.