Avaliação da resistência à fratura de pré-molares superiores tratados endodonticamente e restaurados com diferentes materiais restauradores – Estudo In vitro

Autores

DOI:

https://doi.org/10.33448/rsd-v10i7.16150

Palavras-chave:

Odontologia Restauradora Avançada; Compósitos; Colagem Dentária; Preparação da Cavidade Dentária; Restauração Dentária; Restauração temporária; Falha de restauração dentária.

Resumo

Objetivo: Neste estudo foi avaliada a resistência à fratura de pré-molares superiores tratados endodonticamente, e restaurados com diferentes materiais restauradores. Métodos: Sessenta pré-molares superiores foram submetidos ao mesmo preparo cavitário mésio-ocluso-distal, tratamento endodôntico e divididos em 5 grupos (n = 10): Grupo Coltosol - GCO restaurado com material de silicato de cálcio; Grupo de Cimento de Ionômero de Vidro - GCIV, restaurado com Maxxion R; Cimento de Ionômero de Vidro Modificado - GCIM, restaurado com Gold Label 2; Grupo resina composta - GC, restaurado com Z100, e o grupo de controle positivo (GP) - não restaurado. Um grupo permaneceu intacto (n = 10) servindo como controle negativo (GN). As amostras foram submetidas a teste de resistência à fratura pela máquina de teste universal até que a fratura ocorresse e fosse registrada em newtons (N). O padrão de fratura foi avaliado e descrito como favorável ou desfavorável. Os resultados foram analisados estatisticamente através da análise de variância unilateral e pelo teste post hoc de Tukey com diferença estatística significativa para P <0,05. Resultados: Resultados mais altos de resistência à fratura foram encontrados para GC (1.128,35 ± 249,17), GCIM (1.250,77 ± 173,29) e GN (1.277,22 ± 433,44) (P <0,05). Fraturas mais favoráveis foram observadas no GCO (6), GC (7) e GN (7) (P <0,05). Conclusão: Os dentes restaurados com resina e GCIM modificado apresentaram a mesma resistência dos dentes íntegros. Os dentes restaurados com Coltosol e CIV apresentam resistência semelhante aos dentes não restaurados.

Referências

Atlas, A., Grandini, S., & Martignoni, M. (2019). Evidence-based treatment planning for the restoration of endodontically treated single teeth: importance of coronal seal, post vs no post, and indirect vs direct restoration. Quintessence Int (Berl), 50(10), 772-781.

Balkaya, H., Topçuoğlu, H. S., & Demirbuga, S. (2019). The Effect of Different Cavity Designs and Temporary Filling Materials on the Fracture Resistance of Upper Premolars. Journal of endodontics, 45(5), 628-633.

Braga, M. R., Messias, D. C., Macedo, L. M., Silva-Sousa, Y. C., & Gabriel, A. E. (2015). Rehabilitation of weakened premolars with a new polyfiber post and adhesive materials. Indian J Dent Res, 26(4), 400-5.

Daher, R., Ardu, S., Di Bella, E., Rocca, G. T., Feilzer, A. J., & Krejci, I. (2021). Fracture strength of non-invasively reinforced MOD cavities on endodontically treated teeth. Odontology, 109(2), 368-375.

Eapen, A. M., Amirtharaj, L. V., Sanjeev, K., & Mahalaxmi, S. (2017). Fracture resistance of endodontically treated teeth restored with 2 different fiber-reinforced composite and 2 conventional composite resin core buildup materials: an in vitro study. Journal of endodontics, 43(9), 1499-1504.

Fathi, B., Bahcall, J., & Maki, J. S. (2007). An in vitro comparison of bacterial leakage of three common restorative materials used as an intracoronal barrier. Journal of endodontics, 33(7), 872-874.

Ivancik, J., Majd, H., Bajaj, D., Romberg, E., & Arola, D. (2012). Contributions of aging to the fatigue crack growth resistance of human dentin. Acta biomaterialia, 8(7), 2737-2746.

Jensen, A. L., Abbott, P. V., & Salgado, J. C. (2007). Interim and temporary restoration of teeth during endodontic treatment. Australian dental journal, 52, S83-S99.

Karzoun, W., Abdulkarim, A., Samran, A., & Kern, M. (2015). Fracture strength of endodontically treated maxillary premolars supported by a horizontal glass fiber post: an in vitro study. Journal of endodontics, 41(6), 907-912.

Krishan, R., Paqué, F., Ossareh, A., Kishen, A., Dao, T., & Friedman, S. (2014). Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars, and molars. Journal of endodontics, 40(8), 1160-1166.

Maske, A., Weschenfelder, V. M., Soares Grecca Vilella, F., Burnett Junior, L. H., & de Melo, T. A. F. (2021). Influence of access cavity design on fracture strength of endodontically treated lower molars. Australian Endodontic Journal, 47(1), 5-10.

Milani, A. S., Froughreyhani, M., Mohammadi, H., Tabegh, F. G., & Pournaghiazar, F. (2016). The effect of temporary restorative materials on fracture resistance of endodontically treated teeth. General dentistry, 64(1), e1-4.

Mincik, J., Urban, D., Timkova, S., & Urban, R. (2016). Fracture resistance of endodontically treated maxillary premolars restored by various direct filling materials: an in vitro study. International journal of biomaterials, 2016.

Mitra, S. B. (1991). Adhesion to dentin and physical properties of a light-cured glass-ionomer liner/base. Journal of Dental Research, 70(1), 72-74.

Moore, B., Verdelis, K., Kishen, A., Dao, T., & Friedman, S. (2016). Impacts of contracted endodontic cavities on instrumentation efficacy and biomechanical responses in maxillary molars. Journal of endodontics, 42(12), 1779-1783.

Naseri, M., Ahangari, Z., Moghadam, M. S., & Mohammadian, M. (2012). Coronal sealing ability of three temporary filling materials. Iranian endodontic journal, 7(1), 20.

Ozsevik, A. S., Yildirim, C., Aydin, U., Culha, E., & Surmelioglu, D. (2016). Effect of fibre‐reinforced composite on the fracture resistance of endodontically treated teeth. Australian Endodontic Journal, 42(2), 82-87.

Pai, S. F., Yang, S. F., Sue, W. L., Chueh, L. H., & Rivera, E. M. (1999). Microleakage between endodontic temporary restorative materials placed at different times. Journal of endodontics, 25(6), 453-456.

Pakdeethai, S., Abuzar, M., & Parashos, P. (2013). Fracture patterns of glass–ionomer cement overlays versus stainless steel bands during endodontic treatment: an ex‐vivo study. International endodontic journal, 46(12), 1115-1124.

Plotino, G., Grande, N. M., Isufi, A., Ioppolo, P., Pedullà, E., Bedini, R., & Testarelli, L. (2017). Fracture strength of endodontically treated teeth with different access cavity designs. Journal of endodontics, 43(6), 995-1000.

Sadaf, D. (2020). Survival Rates of Endodontically Treated Teeth After Placement of Definitive Coronal Restoration: 8-Year Retrospective Study. Therapeutics and clinical risk management, 16, 125.

Sidhu, S. K., & Watson, T. F. (1995). Resin-modified glass ionomer materials. A status report for the American Journal of Dentistry. American Journal of Dentistry, 8(1), 59-67.

Silva, M. E. C. da, & Tolentino Júnior, D. S. (2021). Evaluation of coronary microleakage in temporary restorative materials used in endodontics. Research, Society and Development, 10(6), e22210615584.

Soares, C. J., Pizi, E. C. G., Fonseca, R. B., & Martins, L. R. M. (2005). Influence of root embedment material and periodontal ligament simulation on fracture resistance tests. Brazilian Oral Research, 19(1), 11-16.

Taha, N. A., Maghaireh, G. A., Bagheri, R., & Holy, A. A. (2015). Fracture strength of root filled premolar teeth restored with silorane and methacrylate-based resin composite. Journal of dentistry, 43(6), 735-741.

Tennert, C., Fischer, G. F., Vach, K., Woelber, J. P., Hellwig, E., & Polydorou, O. (2016). A temporary filling material during endodontic treatment may cause tooth fractures in two-surface class II cavities in vitro. Clinical oral investigations, 20(3), 615-620.

Tortopidis, D., Lyons, M. F., Baxendale, R. H., & Gilmour, W. H. (1998). The variability of bite force measurement between sessions, in different positions within the dental arch. Journal of oral rehabilitation, 25(9), 681-686.

Wilson, A. D., & Kent, B. E. (1971). The glass‐ionomer cement, a new translucent dental filling material. Journal of Applied Chemistry and Biotechnology, 21(11), 313-313.

Young, A. M. (2002). FTIR investigation of polymerisation and polyacid neutralisation kinetics in resin-modified glass-ionomer dental cements. Biomaterials, 23(15), 3289-3295.

Downloads

Publicado

13/06/2021

Como Citar

MAEDA, W.; NASCIMENTO, W. M. .; COELHO, M. S. .; CAMPOS , D. de L. .; DRUMOND , J. P. .; SOARES, A. de J. .; FROZONI, M. . Avaliação da resistência à fratura de pré-molares superiores tratados endodonticamente e restaurados com diferentes materiais restauradores – Estudo In vitro. Research, Society and Development, [S. l.], v. 10, n. 7, p. e5110716150, 2021. DOI: 10.33448/rsd-v10i7.16150. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16150. Acesso em: 22 nov. 2024.

Edição

Seção

Ciências da Saúde