Algumas aplicações do cálculo diferencial e integral
DOI:
https://doi.org/10.33448/rsd-v10i8.17220Palavras-chave:
Limites; Derivadas; Integrais; Aplicações.Resumo
O Cálculo Diferencial e Integral é a parte da Matemática que cuida, entre outros temas, do estudo das taxas de variação de grandezas. A Matemática está presente no dia a dia mais do que se pode imaginar e, por meio de um breve estudo, nota-se que ela contribui nas nossas atividades do cotidiano, seja em operações básicas, ao calcular o troco do dinheiro quando vendemos algo, ou em situações nas quais são exigidos cálculos mais complexos. A disciplina de Cálculo Diferencial e Integral, deve dialogar com as profissões, sendo que uma das causas do desinteresse dos alunos está associada à ausência de uma visão aplicada do conteúdo na atividade da carreira profissional. À vista disso, este trabalho propõe apresentar e discutir cinco exemplos de aplicações do Cálculo Diferencial e Integral nas Ciências e Engenharias. A metodologia utilizada é do tipo exploratória, baseada em levantamento bibliográfico. Espera-se assim, contribuir com o ensino dos temas relacionados ao Cálculo Diferencial e Integral, apontando aplicações de seu uso nas diversas áreas do conhecimento.
Referências
Alderete, A. C. & Silveira, K. B. V. (2017). Integração por partes: resolução de integrais impróprias para a obtenção do débito cardíaco. Anais do Salão Internacional de Ensino, Pesquisa e Extensão. 8(2).
Almeida, L. M. W.; Fatori, L. H. & Souza, L. G. S. (2010) Ensino de cálculo: uma abordagem usando modelagem matemática. Revista Ciência e Tecnologia, 10 (16), 01-18.
Baldino, R. R. (1995). Assimilação solidária onze anos depois. Grupo de Pesquisa-Ação em Educação Matemática da UNESP, Rio Claro.
Brasil (2018). Base Nacional Comum Curricular. Brasília, MEC.
D’Ottaviano, I. M. L. & Bertato, F. M. (2012). George Berkeley e os fundamentos do cálculo diferencial e integral. Cadernos de História e Filosofia da Ciência (UNICAMP), Campinas, 4, 33-73.
Eves, H. (2011). Introdução a História da Matemática (2a ed.). São Paulo, UNICAMP.
Ferreira, A. S. (2017). Diferentes abordagens do conceito de derivada: uma proposta de investigação matemática. Dissertação (Mestrado em Ensino de Ciências e Matemática). 158 f. Programa de Pós-Graduação em Ensino de Ciências e Matemática da Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte.
Flexa, J. M. N. (2021). Cálculo diferencial e integral: determinação de áreas e volumes e outras aplicações. 49f. Dissertação (Mestrado Profissional em Matemática – PROFMAT). Universidade Federal do Amapá Macapá.
Fulini, M. (2017). História do cálculo diferencial e integral. 56 f. Monografia (conclusão de curso). Universidade Federal de São João Del-Rei.
Gil, A. C. (2008). Métodos e técnicas de pesquisa social (6a ed.). São Paulo: Atas.
Guizelini, A. et al. (2005). O “Gostar de Matemática": em busca de uma interpretação psicanalítica. Boletim de Educação Matemática, 18(23), 23-40.
Hoffmann, L. D. & Bradley, G. L. (1999). Cálculo: um curso moderno e suas aplicações (6a ed.). Rio de Janeiro: LTC.
Macêdo, J. A. & Gregor, I. C. S. (2020). Dificuldades nos processos de ensino e de aprendizagem de cálculo diferencial e integral. Educação Matemática Debate, 4 (10), e202008. Doi: https://doi.org/10.24116/emd.e202008.
Menk, L. F. F.; Póla, M. R. & Barbosa, S. M. (2005). Resolução de problemas de cálculo diferencial integral, aplicados à engenharia, usando múltiplas representações e software de geometria dinâmica. Anais do XXXIII Congresso Brasileiro de ensino de Engenharia. Campina Grande PB, 1-11.
Maisonnave, F. & Knapp, E. (2018). Após 1 ano, transposição do São Francisco já retira 1 milhão do colapso: Canal encheu de água reservatórios no interior de Paraíba e Pernambuco. Disponível em: https://www1.folha.uol.com.br/cotidiano/2018/03/apos-1-ano-transposicao-do-sao-francisco-ja-retira-1-milhao-do-colapso.shtml. Acesso em 13 jun. 2021.
Rafael, R. C. & Escher, M. A. (2015). Evasão, baixo rendimento e reprovações em cálculo diferencial e integral: uma questão a ser discutida. Anais do VII Encontro Mineiro de Educação Matemática. Juiz de Fora (MG), 1-12.
Reis, F. S. (2001). A tensão entre rigor e intuição no ensino de cálculo e análise: a visão de professores-pesquisadores e autores de livros didáticos. 302 f. Tese (Doutorado em Educação) - Universidade Estadual de Campinas.
Rezende, W. M. (2003). O ensino de cálculo: dificuldades de natureza epistemológica. 450 f. Tese (Doutorado em Educação) – Faculdade de Educação, Universidade de São Paulo.
Ribeiro Junior, P. C. E; Carvalho, T. M. M. & Cariello, D. (2010). Aplicações de cálculo diferencial às ciências naturais e humanas: exercícios de reflexão e curiosidades. Anais do X Encontro Nacional de Educação Matemática. Educação Matemática, Cultura e Diversidade. Salvador, 1-10.
Santos, J. V. L. (2009). Formação básica em engenharia: a articulação das disciplinas pelo cálculo diferencial e integral. 202 f. Tese (Doutorado em Educação) - Pontifícia Universidade Católica de São Paulo, São Paulo.
Silva, I. L. N. (2016). Equalizações diferenciais: aspectos históricos, teoria e aplicações em física. 36 f. Trabalho de Conclusão de Curso (Graduação em Matemática) - Universidade Estadual da Paraíba.
Silva, M. A. et al. (2010). Dificuldades de aprendizagem na disciplina de Cálculo Diferencial e integral: estudo de caso com alunos do curso de licenciatura em Química. Anais do V Congresso de Pesquisa e Inovação da Rede Norte Nordeste de Educação Tecnológica-CONNEPI. Maceio, 11-20.
Soares, F. P. B. (2015). Conceitos e ideias do cálculo diferencial e integral. 119 f. Dissertação (Mestrado em Matemática em Rede Nacional) Centro de Ciências Exatas, Universidade estadual de Maringá.
Stewart, J. (2013). Cálculo (Vol. 1. 7a ed.) São Paulo: Cengage Learning.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 João Paulo Antunes Carvalho; Josué Antunes de Macêdo; Lailson dos Reis Pereira Lopes
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.