Bromazepam altera o desempenho durante o tiro ao alvo, mas não afeta o acoplamento interhemisférico no ritmo teta da eletroencefalografia

Autores

DOI:

https://doi.org/10.33448/rsd-v10i9.18174

Palavras-chave:

Electroencefalografia; Coerência; Ritmo Theta; Bromazepam; Tiro ao alvo.

Resumo

O bromazepam imita o efeito inibidor do neurotransmissor ácido gama-aminobutírico (GABA) e podem levar ao prejuízo do desempenho visuomotor. No entanto, poucos estudos avaliaram seus efeitos no acoplamento cortical em atividades de tiro ao alvo. O presente estudo objetivou analisar os efeitos agudo da administração de bromazepam numa tarefa de tiro ao alvo e a coerência do ritmo teta do EEG entre as áreas da cortical frontal, temporal, e motora em quatro períodos preparatórios de tiro. Desse modo, foi realizado um estudo crossover e duplo cego, com 30 sujeitos sob duas condições: bromazepam (6mg) e placebo, com análise eletroencefalográfica para estudar simultaneamente a coerência do ritmo teta no córtex frontal, temporal e motor, numa tarefa de tiro ao alvo; e as possíveis interferências da administração do bromazepam. Os sujeitos do grupo bromazepam apresentaram um desempenho inferior na tarefa em comparação com o placebo (p=0,001). Além disso, a nossa análise mostrou uma diminuição da coerência entre regiões no mesmo hemisfério, um aumento da coerência do ritmo teta nas regiões interhemisféricas no córtex frontal, temporal e motor em diferentes intervalos na preparação que antecedeu o tiroteio (p=0,001). O uso de bromazepam pode influenciar a execução da tarefa, possivelmente devido à modulação neuroquímica, durante a tomada de decisões, desenvolvendo estratégias de preparação do tiro, além de interferir com o fluxo de informação ao nível da atenção durante a execução da tarefa.

Referências

Ahveninen, J, et al. (2017). MRI ‐ constrained spectral imaging of benzodiazepine modulation of spontaneous neuromagnetic activity in human cortex. Neuroimage, 35: 577–582.

Andres, F. G., et al. (1999). Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain, 122: 855-870.

Aprigio, D., et al. (2015). Alpha power oscillation in the frontal cortex under Bromazepam and Modafinil effects. Arq Neuropsiquiatr, 73(11):918-23.

Araújo, F., et al. (2011). The effects of bromazepam over the temporoparietal áreas during the performance of a visuomotor task: a qEEGstudy. Neurosci. Lett, 496(2):116-120.

Babiloni, C., et al. (2005). Anticipation of somatosensory and motor events increases centro-parietal functional coupling: an EEG coherence study. Clin Neurophysiol, 117(5): 1000-8.

Bastos, V. H., et al. (2005). Electroencephalography measures in motor skill learning and effects of bromazepam. Arq. Neuro-Psiquiatr, 63(2B): 443-451.

,

Beudel, M., et al. (2011). Secondary sensory area SII is crucially involved in the preparation of familiar movements compared to movements never made before. Hum Brain Mapp, 32(4):564–579.

Brauns, I., et al. (2014). Changes in the theta band coherence during motor task after hand immobilization. Int Arch Med, 7: 51.

Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679): 1926-1929.

Clark, M., et al. (2013). Pharmacology illustrate. Artmed.

Coutinho, E. S. F., & Cunha, G. M. (2005). Basic concepts of epidemiology and statistics for reading controlled clinical trials. Rev Bras Psiquiatr. 27: 146-51.

Cunha, M, et al. (2006). Neuromodulatory effect of bromazepam on motor learning: an electroencephalographic approach. Neurosci Lett, 407(2): 166-70.

Cunha, M., et al. (2008). Responsiveness of sensorimotor córtex during pharmacological intervention with bromazepam. Neurosci Lett, 448(1): 33-6.

De Carvalho, M. R., et al. (2015). Frontal córtex absolute beta power measurement in Panic Disorder with Agoraphobia patients. Journal of Affective Disorders, 176-181.

Deakin, J. B., et al. (2004). Diazepam produces disinhibitory cognitive effects in male volunteers. Psychopharmacology (Berl), 173(1-2): 88-97.

Deeny, S. P., et al. (2009). Electroencephalographic coherence during visuomotor performance: a comparison of cortico-cortical communication in expert and novice. Journal of Motor Behavior, 41(2): 106-116.

Desmurge, M., & Sirigu, A. (2009). A parietal-premotor network for movement intention and motor awareness. Trends Cogn Sci., 13(10): 411-9.

Eagleman, D. M., & Pariyadath, V. (2009). Is subjective duration a signature of coding efficiency? Philos. Trans. R. Soc Lond B BiolSci, 364(1525): 1841-1851.

Fortunato, S., et al. (2015). The effects of bromazepam over the central and frontal areas during a motor task: an EEG study. Arq Neuro Psrquiatr, 73(4): 321-9.

Ghafouri, M., et al. (2004). Initiation of rapid reach-and-grasp balance reactions: is a pre-formed visuospatial map used in controlling the initial arm trajectory? Exp Brain Res, 155(4): 532-536.

Golan, D. E. (2012). Princípios de farmacologia: a base fisiopatológica da farmacoterapia. Guanabara Koogan.

Gongora, M., et al. (2014). Absolute Theta Power in the Frontal Cortex During a Visuomotor Task: The Effect of Bromazepam on Attention. Clin EEG Neurosci, 46(4): 292-8.

Gulledge, A. T., & Stuart, G. J. (2003). Excitatory actions of GABA in the cortex. Neuron, 37: 299-309.

Hatfield, B. D., et al. (2013). The influence of social evaluation on cerebral cortical activity and motor performance: a study of “real-life” competition. Int. J. Psychophysiol, 90(2): 240-249.

Hatfield, B. D., et al. (1984). Cognitive processes during self-paced motor performance: an electroencephalographic profile of skilled marksmen. J Sport Psychol, 6:42-59.

Haufler, A. J., et al. (2000). Neuro-cognitive activity during a self-paced visuospatial task: Comparative EEG profiles in marksmen and novice shooters. Biol Psychol, 53:131-160.

Homan, R. W., et al. (1987). Cerebral location of international 10-20 system electrode placement. Electroencephalogr Clin Neurophysiol. Apr, 66(4): 376-82.

Janelle, C. M., et al. (2000). Expertise differences in cortical activation and gaze behavior during rifle shooting. Journal of Sport & ExercisePsychology, 22(2): 167-182.

Jadad, A. R., et al. (1996). Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 17: 1-12.

Jorge, M. S., et al. (2007). Study of interhemispheric coherence on healthy adults. ArqNeuropsiquiatr, 65(2B): 377-80.

Kay, L. M. (2006). Theta oscillations and sensorimotor performance. Proceedings of the National Academy of the EUA, 102(10): 3863-3868.

Kerick, S. E., et al. (2004). Cerebral cortical adaptations associated with visuomotor practice. Med Sci Sports Exerc, 36(1): 118-29.

Kerick, S. E., et al. (2001). The role of the left temporal region under the cognitive-motor demands of shooting in skilled marksmen. Biol Psychol, 58(3): 263-277.

Koeneke S, et al. (2004). Bimanual versus unimanual coordination: what makes the difference? NeuroImage, 22(3): 1336–1350.

Linkenkaer-Hansen, K., et al. (2004). Pre-stimulus oscillations increase psychophysical performance in humans. J Neurosci, 24: 10186-10190.

Lino, P. A., et al. (2017). Anxiolytics, Sedatives, and Hypnotics Prescribed by Dentists in Brazil in 2010. Biomed Res Int. 2841549.

Luft, C.; & Andrade, A. (2006). A pesquisa com EEG aplicada à área de aprendizado motor. Revista Portuguesa de Ciências e Desporto. 6: 106-115.

Machado D, et al. (2009). The effects of bromazepam on the performance of a sensory-motor activity: an electroencephalographic study. RevNeurol, 49(6): 295-9.

Makaron, L., et al. (2013). Cognition-impairing effects of benzodiazepine-type drugs: role of GABAA receptor subtypes in an executive function task in rhesus monkeys. Pharmacol Biochem Behav, 104: 62-8.

Mayo, J. P., & Sommer, M. A. (2013). Neuronal correlates of visual time perception at brief timescales. Proc Natl AcadSci USA, 110(4): 1506-11.

Minc D, et al. (2009). Gamma band oscillations under influence of bromazepam during a sensorimotor integration task: An EEG coherence study. Neuroscience Letter, 469: 145-149.

Montenegro, M., et al.. (2005). Neuromodulatory effects of caffeine and bromazepam on visual event-related potential (P300): a comparative study. Arq Neuro-Psiquiatr, 63(2B): 410-5.

Muñoz-Torres, Z., et al. (2011). Diazepam-induced changes in EEG oscillations during performance of a sustained attention task. J Clin Neurophysiol, 28(4): 394-9.

Nguema Ongone, T., et al. (2019). Synthesis of Surfactants Derived from 2-Mercaptobenzimidazole and Study of Their Acute Toxicity and Analgesic and Psychotropic Activities. Biochemistry research international, 9615728.

Pereira A. S., et al. (2018). Metodologia da pesquisa cientifica. [UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Portella, C. E., et al. (2006). Procedural learning and anxiolytic effects: electroencephalographic, motor and attentional measures. Arq Neuro-Psiquiatr, 64(2-B); 478-484.

Ribeiro, J. A., et al. (2018). Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance. Neurosci, 39(3): 527-532.

Sadeghi, N. G., et al. (2011). Neural correlates of subsecond time distortion in the middle temporal area of visual cortex. J Cogn Neurosci, 23:3829- 3840.

Saletu, B., et al. (2002). Classification and evaluation of the pharmacodynamics of psychotropic drugs by single-lead pharmaco-EEG, EEG mapping, and tomography (LORETA). Methods Find Exp Clin Pharmacol, 24(Suppl C): 97-120.

Salles, J. I., et al. (2006). Neuromodulatory effects of bromazepam when individuals were exposed to a motor learning task: quantitative electroencephalography (qEEG). Arq. Neuropsiquiatr, 64(1): 112-117.

Sampaio, I., et al. (2007). Influence of bromazepam on cortical interhemispheric coherence. Arq. Neuro-Psiquiatr,

Sampaio, I., et al. (2008). The influence of bromazepam on cortical power distribution. An Acad Bras Cienc, 80(2): 335 -340.

Schependom, J. V., et al. (2019). Altered transient brain dynamics in multiple sclerosis: Treatment or pathology? Hum Brain Mapp. 40(16): 4789-4800.

Schreckenberger, M., et al. (2004). The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge is humans. Neuroimage, 22(2): 637-44.

Sigel, E., & Ernst, M. (2018). The Benzodiazepine Binding Sites of GABAA Receptors. Trends Pharmacol Sci. 39 (7): 659-671.

Stewart, S. A. (2005). The effects of benzodiazepines on cognition. J Clin Psychiatry, 66(suppl 2): 9-13.

Summerfield, C., & Mahgels, J. A. (2005). Coherent theta-band EEG activity predicts item-context binding during encoding. Neuroimage, 24(3): 692-703.

Votaw, V. R., et al. (2019). The epidemiology of benzodiazepine misuse: A systematic review. Drug Alcohol Depend. 1; 200: 95-114.

Womelsdorf, T., et al. (2006). Gamma-band synchronization in visual cortex predicts speed of change detection. Nature, 439(7076): 733-736.

Downloads

Publicado

27/07/2021

Como Citar

FERNANDES, T. R. S. .; ROCHA, K. de M. .; GUPTA, D.; MARINHO, V.; MOURA, I.; FERNANDES, J. R. N. .; MAGALHÃES, F. E. X.; CARVALHO DA SILVA, V. N. .; ALVES, E. H. P. .; RIBEIRO, P.; VELASQUES, B.; BASTOS, V. H. do V. .; TEIXEIRA, S. S. . Bromazepam altera o desempenho durante o tiro ao alvo, mas não afeta o acoplamento interhemisférico no ritmo teta da eletroencefalografia. Research, Society and Development, [S. l.], v. 10, n. 9, p. e33110918174, 2021. DOI: 10.33448/rsd-v10i9.18174. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18174. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências da Saúde