A aplicação de polímeros biodegradáveis como uma alternativa sustentável

Autores

DOI:

https://doi.org/10.33448/rsd-v10i9.18248

Palavras-chave:

Degradação Biológica; Biopolímeros; Polímeros Biodegradáveis; Sustentabilidade.

Resumo

A geração de resíduos poliméricos apresentam três aspectos: o volume crescente, a complexidade e a poluição ambiental. A reciclagem vem com o intuito de diminuir a quantidade destes resíduos gerados, consistindo em um processo de transformação de materiais, previamente separados, de forma a possibilitar a sua recuperação. Na atual conjuntura, a degradação biológica por meio dos polímeros biodegradáveis é considerada a nova tendência sustentável. Os polímeros biodegradáveis se comparados com os polímeros sintéticos se degradam com menos tempo pela ação de microrganismos, possuindo propriedades semelhantes entre si. Este trabalho tem como objetivo descrever sobre a degradação biológica de materiais poliméricos, levando em consideração os polímeros biodegradáveis naturais e sintéticos. De maneira geral, os polímeros biodegradáveis naturais possuem uma alta taxa de renovabilidade e podem ser utilizados tanto na área médica, como na área ambiental, pois após o descarte são biodegradados por microrganismos presentes no meio ambiente, em um curto espaço de tempo se comparados com os materiais poliméricos tradicionais. Os polímeros biodegradáveis sintéticos têm sido mais largamente empregados em aplicações biomédicos por apresentarem excelente resistência mecânica, bioabsorvível, biocompatibilidade, biodegradabilidade, não toxicidade, flexibilidade e, além disso, são aplicados em embalagens especiais.

Referências

Alavi, M., Nokhodchi, A. (2019). An Overview on Antimicrobial and Wound Healing Properties of Zno Nanobiofilms, Hydrogels, and Bionanocomposites Based on Cellulose, Chitosan, and Alginate Polymers. Carbohydrate Polymers, 227, 2-6. https://doi.org/10.1016/j.carbpol.2019.11534 9

Amokrane, G., Falentin-Daudré, C., Ramtani, S., Migonney, V. (2018). A Simple Method to Functionalize PCL Surface by Grafting Bioactive Polymers Using UV Irradiation. IRBM, 39, 268-278. https://doi.org/10.1016/j.irbm.2018.07. 002

Asadian, M., Onyshchenko, I., Thiry, D., Cools, P., Declercq, H., Snyders, R., Morent, R., Geyter, N. D. (2019). Thiolation of Polycaprolactone (PCL) Nanofibers by Inductively Coupled Plasma (ICP) Polymerization: Physical, Chemical and Biological Properties. Applied Surface Science, 479, 942-952. https://doi. org/10.1016/j.apsusc.2019.02.178

Ashton, E. G., Jr, W. K., Demori, R., Candido, L. H. A., Mauler, R. (2016). Recycling Polymeric Multi-Material Products Through Micronization. Journal of Cleaner Production, 116, 268-278. https://doi.org/10.1016/ j.jclepro.2016.01.018

Barbanti, S. H., Zavaglia, C. A. C., Duek, E. A. R. (2005). Polímeros Bioreabsorvíveis na Engenharia de Tecidos. Polímeros: Ciência e Tecnologia, 15(1), 13-21. https://doi.org/10.1590/S0104-14282005000100006

Bilal, M., Iqbal, H. M. N. (2019). Naturally-Derived Biopolymers: Potential Platforms for Enzyme Immobilization. International Journal of Biological Macromolecules, 130, 462-482. https://doi.org/10.1016/j.ijbiomac.2019.02.152

Boonmee, C. (2016). Degradation of poly(lactic acid) under simulated landfill conditions. Environment and Natural Resources Journal, 14(2), 1-9. https://doi.org/10.14456/ ennrj.2016.8.

Braido, R. S., Borges, L. E. P., Pinto, J. C. (2018). Chemical Recycling of Crosslinked Poly(Methyl Methacrylate) and Characterization of Polymers Produced with the Recycled Monomer. Journal of Analytical and Applied Pyrolysis, 132, 47-55. https://doi.org/10.1016/j.jaap.2018.03.01 7

Brito, G. F., Agrawal, P., Araújo, E. M., Mélo, T. J. A. (2011). Biopolímeros, Polímeros Biodegradáveis e Polímeros Verdes. Revista Eletrônica de Materiais e Processos (REMAP), 6(2), 127-139. http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/view/222/204

Coutinho, B. C., Miranda, G. B., Sampaio, G. R., Souza, L. B. S., Santana, W. J., Coutinho, H. D. M. (2004). A importância e as vantagens do polihidroxibutirato (plástico biodegradável). Holos, 20, 76-81. https://doi.org/10.15628/holos.2004.49

Deng, C., Wu, J., Cheng, R., Meng, F., Klok, H-A., Zhong, Z. (2014). Functional Polypeptide and Hybrid Materials: Precision Synthesis Via Amino Acid N-Carboxyanhydride Polymerization and Emerging Biomedical Applications. Progress in Polymer Science, 39, 330-364. https://doi.org/10.1016/j.progpolymsci.2013.10.008

Dias, J. C. (2016). Rotas de Destinação dos Resíduos Plásticos e seus Aspectos Ambientais: Uma Análise da Potencialidade da Biodegradação. Dissertação de Mestrado em Planejamento Energético/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

Dubey, S. P., Thakur, V. K., Krishnaswamy, S., Abhyankar, H. A., Marchante, V., Brighton, J. L. (2017). Progress in Environmental-Friendly Polymer Nanocomposite Material from PLA: Synthesis, Processing and Applications. Vacuum, 146, 655-663. https://doi.org/ 10.1016/j .vacuum.2017.07.009

Farias, S. S., Siqueira, S. M. C., Cristino, J. H. S., Rocha, J. M. (2016). Biopolímeros: Uma Alternativa para Promoção do Desenvolvimento Sustentável. Revista Geonorte, 7(26), 61-77. https://periodicos.ufam.edu.br/index.php/revista-geonorte/article/view/2759/2495

Fechini, G. J. M. (2013). Polímeros Biodegradáveis: Tipos, Mecanismos, Normas e Mercado Mundial. 1ª Ed. São Paulo: Editora Mackenzie, 120p.

Fraga, S. C. L. (2014). Reciclagem de Materiais Plásticos: Aspectos Técnicos, Econômicos, Ambientais e Sociais. 1ª Ed. São Paulo: Editora Érica Ltda, 120p.

Franchetti, S. M. M., Marconato, J. C. (2006). Polímeros Biodegradáveis - Uma Solução Parcial para Diminuir a Quantidade dos Resíduos Plásticos. Química Nova, 29(4), 811-816. https://www.scielo.br/pdf/qn/v29n4/30263.pdf

Gomes, J. (2010). Poluição Atmosférica: Um Manual Universitário. 2ª Ed. edição. Pubindustria, 266p.

Hai, T. A. P., Sugimoto, R. (2018). Surface modification of chitin and chitosan with poly(3-hexylthiophene) via oxidative polymerization. Applied Surface Science, 434, 188-197. https://doi.org/10.1016/j.apsusc .2017.10.197

Hamad, K., Kaseem, M., Deri, F. (2013). Recycling of Waste From Polymer Materials: An Overview of the Recent Works. Polymer Degradation And Stability, 98, 2801-2812. https://doi.org/10. 1016/j.polymdegradstab.2013.09.025

Hatti-Kaul, R., Nilsson, L. J., Zhang, B., Rehnberg, N., Lundmark, S. (2019). Designing Biobased Recyclable Polymers for Plastics. Trends in Biotechnology, 38(1), 50-67. https://doi.org/10.1016/j.tibtech.2019.04.011

Hemamalini, T., Dev, V. R. G. (2017). Comprehensive review on electrospinning of starch polymer for biomedical applications. International Journal of Biological Macromolecules, 106, 712-718. https://doi.org/10.1016/j.ijbiomac.2017.08.0 79

Jim, K. J., Tan, B. (2020). The development and challenges of poly (lactic acid) and poly(glycolic acid). Advanced Industrial and Engineering Polymer Research, 3, 60-70. https://doi.org/10.1016/j.aiepr.2020.01.002

Klemm, D., Heublein, B., Fink, H. P., Bohn, A. (2005). Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 44, 3358-3393. https://doi.org/10.1002/anie.200460587

Landim, A. P. M., Bernardo, C. O., Martins, I. B. A., Francisco, M. R., Santos, M. B., Melo, N. R. D. (2016). Sustentabilidade quanto às Embalagens de Alimentos no Brasil. Polímeros, 26, 82-92. https://doi.org/10.1590/0104-1428.1897

Lendlein, A., Sisson, A. (2011). Handbook of Biodegradable Polymers: Synthesis, Characterization and Applications. Wiley-VCH, Germany, 426p.

Lima, E. G., Okimoto, M. L. L. R. (2009). Revisão da aplicação de produtos biopolímeros obtidos pela reciclagem de plásticos em design. Revista Iberoamericana de Polímeros, 10(5), 244-259. http://www.ehu.eus/reviberpol/pdf/SE P09/lima.pdf

Mano, E. B., Pacheco, É. B. A. V., Bonelli C. M. C. (2010). Meio Ambiente Poluição e Reciclagem. 2ª Ed., São Paulo: Editora Blucher, 200p.

Maris, J., Bourdon, S., Brossard, J-M., Cauret, L., Fontaine, L., Montembault, V. (2018). Mechanical Recycling: Compatibilization of Mixed Thermoplastic Wastes. Polymer Degradation and Stability, 147, 245-266. https://doi.org /10.1016/j.polymdegradstab.2017.11.001

Moura, C., Muszinski, P., Schmidt, C., Almeida, J., Pinto, L. (2006). Quitina e Quitosana Produzidas a Partir de Resíduos de Camarão e Siri: Avaliação do Processo em Escala Piloto. Vetor, 16, 37-45. http://repositorio.furg.br/ handle/1/4604

Niaounakis, M. (2019). Recycling of Biopolymers - The Patent Perspective. European Polymer Journal, 114, 464-475. https://doi.org/10.1016/ j.eurpolymj.2019.02.027

Nordin, N. M., Buys, Y. F., Anuar, H., Ani, M. H., Pang, M. M. (2018). Development of Conductive Polymer Composites from PLA/TPU Blends Filled with Graphene Nanoplatelets. Materials Today: Proceedings, 17, 500-507. https:// doi.org/10.1016/j.matpr.2019.06.328

Pillai, C. K. S., Paul, W., Sharma, C. P. (2009). Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Progress in Polymer Science, 34, 641-678. https://doi.org/10.1016/j.prog polymsci.2009.04.001

Piva, A. M., Wiebeck, H. (2004). Reciclagem do Plástico: Como Fazer da Reciclagem um Negócio Lucrativo. 1ª Ed. São Paulo: Artliber Editora, 119p.

Polman, E. M. N., Gruter, G. J. M., Parsons, J. R., Tietema, A. (2021). Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Science of the Total Environment, 753, 1-13. https:// doi.org/10.1016/j.scitotenv.2020.141953

Pradella, J. G. C. (2006). Biopolímeros e Intermediários Químicos. Relatório Técnico nº 84 396-205. Centro de Tecnologia de Processos e Produtos Laboratório de Biotecnologia Industrial- LBI/CTPP, São Paulo.

Pravakar, O., Siddaiah, T., Ramacharyulu, P. V. R. K., Gopal, N. O., Ramu, C., Nagabhushana, H. (2019). Spectroscopic, thermal, structural and electrical studies on VO2+ ions doped PVA/MAA: EA polymer blend films. Journal of Science: Advanced Materials and Devices, 4, 267-275. https://doi.org/ 10.1016/j.jsamd.2019.03.004

Rosa, D. S., Chui, Q. S. H., Filho, R. P., Agnelli, J. A. M. (2002). Avaliação da Biodegradação de Poli-β-(Hidroxibutirato), Poli-β-(Hidroxibutirato-co-valerato) e Poli-ε-(caprolactona) em Solo Compostado. Polímeros: Ciência e Tecnologia, 12( 4), 311-317. https://doi.org/10.1590/S0104-1428200 20 00400015

Rosa, D. S., Pantano Filho, R. (2003). Biodegradação: Um Ensaio com Polímeros, São Paulo: Editora Moara, 146p.

Sabbagh, F., Muhamad, I. I. (2017). Production of poly-hydroxyalkanoate as secondary metabolite with main focus on sustainable energy. Renewable and Sustainable Energy Reviews, 72, 95-104. https://doi.org/10.1016/j.rser.2016.11.012

Shankaran, D. R. (2018). Cellulose nanocrystals for health care applications. In: Mohan Bhagyaraj, S.M., Oluwafemi, O.S., Kalarikkal, N., Thomas, S. (Eds.). Micro and Nano Technologies. 415-459. https://doi.org/10.1016/B978-0-08-101971- 9.00015-6

Salama, A. (2019). Cellulose/Calcium Phosphate Hybrids: New Materials for Biomedical and Environmental Applications. International Journal of Biological Macromolecules, 127, 606-617. https://doi.org/10.1016/j.ijbiomac.2019.01.13 0

Smith, R. (2005). Biodegradable Polymers for Industrial Applications. 1ª Ed., Press LLC, USA, 548p.

Tabasum, S., Younas, M., Zaeem, M. A., Majeed, I., Majeed , M., Noreen, A., Iqbal , M. N., Zia, K. M. (2018). A Review on Blending of Corn Starch with Natural and Synthetic Polymers, and Inorganic Nanoparticles with Mathematical Modeling. International Journal of Biological Macromolecules, 122, 969-996. https: //doi.org/10.1016/j.ijbiomac.2018.10.092

Teodorescu, M., Bercea, M., Morariu, S. (2019). Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnology Advances, 37(1), 109-131. https://doi.org/10.1016/j.biot echadv.2018.11.008

Thomas, P., Rumjit, N P., Lai, C. W., Johan, M. R. B., Saravanakumar, M. P. (2020). Polymer-Recycling of Bulk Plastics. Encyclopedia of Renewable and Sustainable Materials, 2, 432-454. https://doi.org/ 10.1016/B978-0-12-803581-8.10765-9

Tong, R, Chen, G, Tian, J, He, M. (2020). Highly transparent, weakly hydrophilic and biodegradable cellulose film for flexible electroluminescent devices. Carbohydrate Polymers, 227, 1-8. https://doi.org/10.1016/j.carbpol.2019.11536 6

Valerio, O., Muthuraj, R., Codou, A. (2020). Strategies for polymer to polymer recycling from waste: Current trends and opportunities for improving the circular economy of polymers in South America. Current Opinion in Green and Sustainable Chemistry, 25, 100381. https://doi.org /10.1016/j.cogsc.2020.100381

Vesilind, P. A., Morgan, S. M. (2011). Introdução à Engenharia Ambiental. Tradução da 2ª Ed. norte-americana. São Paulo: Cegage Learning, 456p.

Zhao, L., Huang, H., Han, Q., Yu, Q., Lin, P., Huang, S., Yin, X., Yang, F., Zhan, J. Wang, H., Wang, L. (2020). A novel approach to fabricate fully biodegradable poly(butylene succinate) biocomposites using a paper-manufacturing and compression molding method. Composites Part A, 139, 1-9. https://do i.org/10.1016/j.compositesa.2020.106117

Ziegler-Borowska, M. (2019). Magnetic nanoparticles coated with aminated starch for HSA immobilization- simple and fast polymer surface functionalization. International Journal of Biological Macromolecules, 136, 106-114. https:// doi.org/10.1016/j.ijbiomac.2019.06.044

Downloads

Publicado

31/07/2021

Como Citar

ARAÚJO, B. A.; FREITAS, L. S. de; SARMENTO, K. K. F. .; BEZERRA, V. R.; LIMA, C. A. P. de; MEDEIROS, K. M. de . A aplicação de polímeros biodegradáveis como uma alternativa sustentável . Research, Society and Development, [S. l.], v. 10, n. 9, p. e49010918248, 2021. DOI: 10.33448/rsd-v10i9.18248. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18248. Acesso em: 22 nov. 2024.

Edição

Seção

Artigos de Revisão