Composição química e perfil de ácidos graxos no leite orgânico de vacas leiteiras alimentadas com microalgas (Schizochytrium limacinum)
DOI:
https://doi.org/10.33448/rsd-v10i10.18821Palavras-chave:
Polyunsaturated fatty acids; Milk enrichment; Nutraceutical; Lipid supplementation.Resumo
Nosso objetivo foi determinar se a suplementação de microalgas (Schizochytrium limacinum) afeta a produção diária, composição e perfil de ácidos graxos do leite orgânico. Oito vacas em lactação foram mantidas a pasto e divididas em dois grupos: as alimentadas com sabugo de milho como suplemento duas vezes ao dia durante a ordenha (CTL) e as alimentadas com sabugo de milho misturado com 100 g de microalgas (ALG) por vaca diariamente. As microalgas não afetaram a produção e composição diária do leite, mas foi observada uma tendência de redução da gordura do leite. O nível de ácido esteárico no leite de vacas alimentadas com ALG foi significativamente reduzido em 2,46 vezes, enquanto os níveis de ácido elaídico e ácido linoléico conjugado foram significativamente elevados em 3,3 vezes e 1,8 vezes, respectivamente. Uma proporção significativamente maior de PUFA: MUFA foi observada no tratamento com ALG, enquanto a proporção de MUFA: ácido graxo saturado mostrou uma tendência a aumentar (P = 0,073). Microalgas ricas em ácidos graxos ômega-3 enriquecem com sucesso o leite orgânico sem afetar negativamente a produtividade ou composição. Os consumidores podem ser atraídos para aumentar a ingestão de gordura polinsaturada ômega 3 do leite orgânico. Esses resultados podem apoiar a decisão de nutricionistas e agricultores de alimentar o gado leiteiro com microalgas, uma vez que é economicamente viável.
Referências
Association of Official Analytical Chemists. (1990). Official Methods of Analysis: Changes in Official Methods of Analysis Made at the Annual Meeting. Supplement (Vol. 15). Association of Official Analytical Chemists.
Angulo, J., Mahecha, L., Nuernberg, K., Nuernberg, G., Dannenberger, D., Olivera, M., ... & Bernard, L. (2012). Effects of polyunsaturated fatty acids from plant oils and algae on milk fat yield and composition are associated with mammary lipogenic and SREBF1 gene expression. Animal: an International Journal of Animal Bioscience, 6(12), 1961-1972. https://doi.org/10.1017/S1751731112000845
Barletta, R. V., Gandra, J. R., Bettero, V. P., Araújo, C. E., Del Valle, T. A., de Almeida, G. F., ... & Rennó, F. P. (2016). Ruminal biohydrogenation and abomasal flow of fatty acids in lactating cows: oilseed provides ruminal protection for fatty acids. Animal Feed Science and Technology, 219, 111-121. https://doi.org/10.1016/j.anifeedsci.2016.06.011
Bentsen, H. (2017). Dietary polyunsaturated fatty acids, brain function and mental health. Microbial Ecology in Health and Disease, 28(sup1), 1281916. https://doi.org/10.1080/16512235.2017.1281916.
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
Boeckaert, C., Fievez, V., Van Hecke, D., Verstraete, W., & Boon, N. (2007). Changes in rumen biohydrogenation intermediates and ciliate protozoa diversity after algae supplementation to dairy cattle. European Journal of Lipid Science and Technology, 109(8), 767-777. https://doi.org/10.1002/ejlt.200700052
Chilliard, Y., Glasser, F., Ferlay, A., Bernard, L., Rouel, J., & Doreau, M. (2007). Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. European Journal of Lipid Science and Technology, 109(8), 828-855. https://doi.org/10.1002/ejlt.200700080
da Silva, G. G., de Jesus, E. F., Takiya, C. S., Del Valle, T. A., da Silva, T. H., Vendramini, T. H. A., ... & Rennó, F. P. (2016). Partial replacement of ground corn with algae meal in a dairy cow diet: Milk yield and composition, nutrient digestibility, and metabolic profile. Journal of Dairy Science, 99(11), 8880-8884. https://doi.org/10.3168/jds.2016-11542
Del Campo, J. A., García-González, M., & Guerrero, M. G. (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied Microbiology and Biotechnology, 74(6), 1163-1174.
Dragincic, J., Korac, N., & Blagojevic, B. (2015). Group multi-criteria decision making (GMCDM) approach for selecting the most suitable table grape variety intended for organic viticulture. Computers and Electronics in Agriculture, 111, 194-202. https://doi.org/10.1016/j.compag.2014.12.023
FAO (Food and Agriculture Organization of the United Nations). (2018). The State of World Fisheries and Aquaculture - Meeting the sustainable development goals
Franklin, S. T., Martin, K. R., Baer, R. J., Schingoethe, D. J., & Hippen, A. R. (1999). Dietary marine algae (Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and transvaccenic acids in milk of dairy cows. The Journal of Nutrition, 129(11), 2048-2054. https://doi.org/10.1093/jn/129.11.2048
Ghasemi Fard, S., Wang, F., Sinclair, A. J., Elliott, G., & Turchini, G. M. (2019). How does high DHA fish oil affect health? A systematic review of evidence. Critical Reviews in Food Science and Nutrition, 59(11), 1684-1727. https://doi.org/10.1080/10408398.2018.1425978
Harfoot, C. G., & Hazlewood, G. P. (1997). Lipid metabolism in the rumen. In ‘The rumen microbial ecosystem’.(Ed. PN Hobson) pp. 382–426.
Jensen, R. G. (2002). The composition of bovine milk lipids: January 1995 to December 2000. Journal of Dairy Science, 85(2), 295-350. https://doi.org/10.3168/jds.S0022-0302(02)74079-4
Jeyanathan, J., Escobar, M., Wallace, R. J., Fievez, V., & Vlaeminck, B. (2016). Biohydrogenation of 22: 6n-3 by Butyrivibrio proteoclasticus P18. BMC microbiology, 16(1), 104. https://doi.org/10.1186/s12866-016-0720-9
Komarek, A. R. (1993). A filter bag procedure for improved efficiency of fiber analysis. Journal of Dairy Science, 76(suppl 1), 250-259.
Kolanowski, W., & Laufenberg, G. (2006). Enrichment of food products with polyunsaturated fatty acids by fish oil addition.European Food Research and Technology, 222(3-4), 472-477. https://doi.org/10.1007/s00217-005-0089-8
Kus, M. M., & Mancini-Filho, J. (2010). Ácidos graxos: eicosapentaenóico (EPA) e docosahexaenóico (DHA). São Paulo: ILSI Brasil.
Lamminen, M., Halmemies-Beauchet-Filleau, A., Kokkonen, T., Simpura, I., Jaakkola, S., & Vanhatalo, A. (2017). Comparison of microalgae and rapeseed meal as supplementary protein in the grass silage based nutrition of dairy cows. Animal Feed Science and Technology, 234, 295-311. https://doi.org/10.1016/j.anifeedsci.2017.10.002
Lamminen, M., Halmemies-Beauchet-Filleau, A., Kokkonen, T., Jaakkola, S., & Vanhatalo, A. (2019). Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Animal Feed Science and Technology, 247, 112-126. https://doi.org/10.1016/j.anifeedsci.2018.11.005
Mertens, D. R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International, 85(6), 1217-1240.
Moate, P. J., Williams, S. R. O., Hannah, M. C., Eckard, R. J., Auldist, M. J., Ribaux, B. E., ... & Wales, W. J. (2013). Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. Journal of Dairy Science, 96(5), 3177-3188. https://doi.org/10.3168/jds.2012-6168
Moran, C. A., Morlacchini, M., Keegan, J. D., & Fusconi, G. (2018). The effect of dietary supplementation with Aurantiochytrium limacinum on lactating dairy cows in terms of animal health, productivity and milk composition. Journal of Animal Physiology and Animal Nutrition, 102(2), 576-590. https://doi.org/10.1111/jpn.12827
Moran, C. A., Morlacchini, M., Keegan, J. D., Warren, H., & Fusconi, G. (2019). Dietary supplementation of dairy cows with a docosahexaenoic acid-rich thraustochytrid, Aurantiochytrium limacinum: effects on milk quality, fatty acid composition and cheese making properties. Journal of Animal and Feed Sciences, 28(1). https://doi.org/10.22358/jafs/105105/2019
Senger, C. C., Kozloski, G. V., Sanchez, L. M. B., Mesquita, F. R., Alves, T. P., & Castagnino, D. S. (2008). Evaluation of autoclave procedures for fibre analysis in forage and concentrate feedstuffs. Animal Feed Science and Technology, 146(1-2), 169-174. https://doi.org/10.1016/j.anifeedsci.2007.12.008
Sinedino, L. D., Honda, P. M., Souza, L. R., Lock, A. L., Boland, M. P., Staples, C. R., ... & Santos, J. E. (2017). Effects of supplementation with docosahexaenoic acid on reproduction of dairy cows. Reproduction, 153(5), 707-723. https://doi.org/10.1530/REP-16-0642
Toral, P. G., Hervás, G., Leskinen, H., Shingfield, K. J., & Frutos, P. (2018). In vitro ruminal biohydrogenation of eicosapentaenoic (EPA), docosapentaenoic (DPA), and docosahexaenoic acid (DHA) in cows and ewes: Intermediate metabolites and pathways. Journal of Dairy Science, 101(7), 6109-6121. https://doi.org/10.3168/jds.2017-14183
Vahmani, P., Fredeen, A., & Glover, K. (2013a). Dairy system impacts on milk fat composition related to human health. Milk Fat: Composition, Nutritional Value and Health Implications. Nova Science Publishers Inc., Hauppauge, NY, 47-60.
Vahmani, P., Fredeen, A. H., & Glover, K. E. (2013b). Effect of supplementation with fish oil or microalgae on fatty acid composition of milk from cows managed in confinement or pasture systems. Journal of Dairy Science, 96(10), 6660-6670. https://doi.org/10.3168/jds.2013-6914
Soest, P. V. (1963). Use of detergents in the analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content. Journal of the Association of Official Agricultural Chemists, 46(5), 825-829.
Zymon, M., Strzetelski, J., & Skrzyński, G. (2014). Aspects of appropriate feeding of cows for production of milk enriched in the fatty acids, EPA and DHA. A review. Journal of Animal and Feed Sciences, 23(2), 109-116. https://doi.org/10.22358/jafs/65698/2014
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Neiva Carneiro; Wilson Zacaron; Gabriel Rossato; Gabriela Solivo ; Renata Bolzan Falk; Roger Wagner; Aleksandro S. da Silva; Claiton André Zotti
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.