Algoritmo genético e enxame de partículas aplicados na otimização de sistema de elétrico
DOI:
https://doi.org/10.33448/rsd-v10i10.18871Palavras-chave:
Algoritmo Genético; Enxame de Partículas; Computação Paralela; Otimização; Rede elétrica.Resumo
Este artigo almeja apresentar e executar um modelo composto utilizando Algoritmo Genético (AG) e Enxame de Partículas (PSO), com auxílio de métodos da computação paralela, para otimizar a distribuição elétrica em uma rede energética baseada em um Sistema IEEE de 14 barras. A modelagem matemática-computacional permite utilizar a função objetivo para análise do custo em relação à potência ou tensão como variável independente, e é a ponte para a conexão entre os 2 algoritmos implementados. Os resultados apresentados neste artigo demonstram que a metodologia foi implementada de forma esplêndida, além de obter excelente custo computacional e obedecer às restrições físicas de segurança da rede, também alcançou soluções globais em sua otimização.
Referências
Costa, H. A. de O., Costa, D. C. L. & Meneses, L. A. de. (2021) Interdisciplinarity Applied to the Optimized Dispatch of Integrated Electricity and Natural Gas Networks using the Genetic Algorithm. Research, Society and Development, [S. l.], v. 10, n. 2, p. e42110212641. DOI: 10.33448/rsd-v10i2.12641. https://rsdjournal.org/index.php/rsd/article/view/12641.
Costa, D. C. L., Costa, H. A. de O., Castro, A. P. S.; Cruz, E. C., Azancort Neto, J. L. & Cruz, B. C. C. da . (2020). The dimensions of Mathematical and Computational Modeling prescribed to Environmental Management. Research, Society and Development, [S. l.], v. 9, n. 10, p. e6939109013. DOI: 10.33448/rsd-v9i10.9013. https://rsdjournal.org/index.php/rsd/article/view/9013.
Costa, D., Costa, H. & Neves, Lucas. (2019) Métodos Matemáticos Aplicados nas Engenharias via Sistemas Computacionais. SINEPEM – IFPA.
Chitero, J. G. M., Bonini Neto, A., Bonini, C. dos S. B., Heinrichs, R., Soares Filho, C. V., Mateus, G. P., Bisi, B. S., Costa, N. R., Piazentin, J. C., Meirelles, G. C. & Gabriel Filho, L. R. A. (2020). Analysis of the physical recovery of degraded soils via Artificial Neural Networks using a graphical interface. Research, Society and Development, [S. l.], v. 9, n. 7, p. e257973719. DOI: 10.33448/rsd-v9i7.3719. https://rsdjournal.org/index.php/rsd/article/view/3719.
Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning (1st ed.), Addison-Wesley Professional.
Ghosh, M., Guha, R., Alam, I., Lohariwal, P., Jalan, D. & Sarkar, R. (2020). Binary Genetic Swarm Optimization: A Combination of GA and PSO for Feature Selection. Journal of Intelligent Systems, 29(1), 1598-1610. DOI: 10.1515/jisys-2019-0062.
Holland, J. H. (1962). Outline for a Logical Theory of Adaptive Systems. Journal of the ACM. 9(3), 297–314. DOI: 10.1145/321127.321128.
Hong, H., Panahi, M., Shirzadi, A., Ma, T., Liu, J., Zhu, A., Chen, W., Kougias, I. & Kazakis, N. (2018). Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution, Science of The Total Environment, 621, 1124-1141, https://doi.org/10.1016/j.scitotenv.2017.10.114.
Kennedy, J. & Eberhart, R. (1995, 27 November-1 December). Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia, (pp. 1942-1948), vol.4, doi:10.1109/ICNN.1995.488968.
Mascarenhas, T. A. T., Moriel Junior, J. G., Gomes, R. de S. R. & Mello, G. J. (2020). Appication of machine learning algorithms in the Classification of Specialized Knowledge of Physics Teachers. Research, Society and Development, [S. l.], v. 9, n. 11, p. e86191110584. DOI: 10.33448/rsd-v9i11.10584. https://rsdjournal.org/index.php/rsd/article/view/10584.
Mota, C. (2021, May 31). Como seca histórica no Brasil traz risco de inflação e racionamento de energia. BBC Brasil. https://www.bbc.com/portuguese/brasil-57290389
Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. Núcleo de Tecnologia Educacional – UFSM.
Pinto, G. L., Gabriel Filho, L. R. A., Bonini Neto, A. & Baptista, R. D. (2020). The Millennials Culture: behavioral mapping in estimating generations using a mathematical model and artificial intelligence. Research, Society and Development, [S. l.], v. 9, n. 9, p. e887997772. DOI: 10.33448/rsd-v9i9.7772. https://rsdjournal.org/index.php/rsd/article/view/7772.
R. Ouiddir., M. Rahli & L. Abdelhakem-Koridak. (2005). Economic Dispatch using a Genetic Algorithm: Application to Western Algeria's Electrical Power Network. Journal of Information Science and Engineering, 21(3), 659-668.
Schaffer, J., Caruana, R., Eshelman, L. & Das, R. (1989, 1 June). A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization. Proceedings of the 3rd International Conference on Genetic Algorithms. San Francisco, CA.
Sheppard, C. (2016). Genetic Algorithms with Python (1st ed.). Createspace Independent Publishing Platform
Shi, Y. & Eberhart, R. (1998, 4-9 May). A modified particle swarm optimizer. IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, (pp. 69-73), doi:10.1109/ICEC.1998.699146.
Teles, W. de S., Machado, A. P., Cantos Júnior, P. C. C., Melo, C. M. de, Silva, M. H. S., Silva, R. N. da & Jeraldo, V. de L. S. (2021). Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data. Research, Society and Development, [S. l.], v. 10, n. 4, p. e19310413879. DOI: 10.33448/rsd-v10i4.13879. https://rsdjournal.org/index.php/rsd/article/view/13879.
Wirsansky, E. (2020). Hands-On Genetic Algorithms with Python (1st ed.). Packt Publishing Ltd.
Zhou, Y., Li, Z., Zhou, H. & Li, Z.(2016, July 27-29). The application of PSO in the power grid: A review. 35th Chinese Control Conference (CCC), Chengdu, China, DOI: 10.1109/ChiCC.2016.7554948.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Heictor Alves de Oliveira Costa; Larissa Luz Gomes; Denis Carlos Lima Costa
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.