Perfil de expressão do microRNA-29b e sua ação sobre a metaloproteinase de matriz 2 (MMP-2) no processo da carcinogênese cervical

Autores

DOI:

https://doi.org/10.33448/rsd-v10i11.19471

Palavras-chave:

Câncer cervical; microRNA-29b; Biomarcador; Metaloproteinase de matriz 2.

Resumo

Introdução: O câncer cervical é o quarto tipo de câncer mais comum entre as mulheres em todo o mundo. A fim de tornar o diagnóstico mais precoce e preciso, aumenta a perspectiva de utilização de microRNA-29b, que tem como alvo a metaloproteinase-2 da matriz (MMP-2), enzimas proteolíticas que desempenham significativo papel na degradação da matriz extracelular e consequente progressão das lesões cancerígenas cervicais. Objetivos: O objetivo deste estudo foi avaliar os níveis de expressão do microRNA-29b em todos os níveis histológicos da carcinogênese cervical e sua relação com a MMP-2 nesse tipo de câncer. Métodos: o RNA foi extraído de dezoito amostras de biópsia embebidas em parafina com diagnóstico de carcinoma e 19 amostras ​​consideradas saudáveis, foi realizada a técnica de PCR em tempo real para análise de expressão do microRNA-29b. Resultados: Nossos resultados mostram subexpressão de microRNA-29b e MMP-2. Essa diminuição da expressão foi estatisticamente significativa e diferenciada nos subtipos histopatológicos. Além disso, foi demonstrado que a MMP-2 é regulada diretamente pelo microRNA-29b. Não foram encontrados outros estudos que realizassem a mesma análise em cânceres cervicais. Conclusão: Nossos resultados indicam um potencial diagnóstico de microRNA-29b e MMP-2 para lesões e câncer cervical, e mostram uma associação direta entre essas moléculas.

Referências

Acunzo, M., Romano, G., Wernicke, D., Croce, C. M. (2015). MicroRNA and cancer - A brief overview. Advances in Biological Regulation, 57, 1-9.

Barut, M., Kale, A., Kuyumcuoğlu, U., Bozkurt, M., Ağaçayal, E., Özekinci, S. (2015). Analysis of sensitivity, specificity, and positive and negative predictive values of smear and colposcopy in diagnosis of premalignant and malignant cervical lesions. Medical Science Monitor, 21, 3860-7.

Basu, P., Mittal, S., Bhadra, Vale D., Chami, K.Y. (2018). Secondary prevention of cervical cancer. Best Practice & Research: Clinical Obstetrics & Gynaecology, 47, 73-85.

Björklund, M. & Koivunen, E. (2005). Gelatinase-mediated migration and invasion of cancer cells. Biochimica et Biophysica Acta – Reviews on Cancer, 1755, 37-69.

Branca, M., Ciotti, M., Giorgi, C., Santini. D., Di Bonito, L., Costa, S. (2006). Matrix metalloproteinase-2 (MMP-2) and its tissue inhibitor (TIMP-2) are prognostic factors in cervical cancer, related to invasive disease but not to high-risk human papillomavirus (HPV) or virus persistence after treatment of CIN. Anticancer Research, 26, 1543-56.

Brummer, O., Böhmer, G., Hollwitz, B., Flemming, P., Petry, K. U., Kühnle, H. (2002). MMP-1 and MMP-2 in the cervix uteri in different steps of malignant transformation - An immunohistochemical study. Gynecology Oncology, 84, 222-7.

Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings National Academy of Science of the United States of America, 101, 2999-3004.

Chakraborti, S., Mandal, M. S., Mandal, A., Chakraborti, T. (2003). Regulation of matrix metalloproteinases. An overview. Molecular and Cellular Biochemistry, 253, 269-85.

Chang, C. & Werb, Z. (2016). The many faces of metalloproteases: Cell growth, invasion, angiogenesis and metastasis. Trends in Cell Biology, 11, S37-43.

Chen, L. H., Hsu, W. L., Tseng, Y. J., Liu, D. W., Weng, C. F. (2016). Involvement of DNMT 3B promotes epithelial-mesenchymal transition and gene expression profile of invasive head and neck squamous cell carcinomas cell lines. BMC Cancer, 16, 431.

Chen, Y., Gao, D. Y., Huang, L. (2015). In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Advanced Drug Delivery Reviwes, 81, 128-41.

Chou, J., Lin, J. H., Brenot, A., Kim, J. W., Provot, S., Werb, Z. (2013). GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nature Cell Biology, 15, 201-13.

Cardeal, L. B. S., Boccardo, E., Termini, L., Rabachini, T., Andreoli, M. A., Loreto, C. (2012). HPV16 oncoproteins induce MMPs/RECK-TIMP-2 imbalance in primary keratinocytes: Possible implications in cervical carcinogenesis. PLoS One, 7, e33585.

Dehn, D., Torkko, K. C., Shroyer, K. R.(2007). Human papillomavirus testing and molecular markers of cervical dysplasia and carcinoma. Cancer, 111, 1-14.

Fang, J. H., Zhou, H. C., Zeng, C., Yang, J., Liu, Y., Huang, X. (2011). MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology, 54, 1729-40.

Fu, Q., Zhang, J., Huang, G., Zhang, Y., Zhao, M., Zhang, Y. (2020). microRNA-29b inhibits cell growth and promotes sensitivity to oxaliplatin in colon cancer by targeting FOLR1. BioFactors, 46, 136-45.

Globocan Observatory World. (2019). Cancer Today - World. International Agency for Research of Cancer.

He, J., Ye, W., Kou, N., Chen, K., Cui, B., Zhang, X. (2020). MicroRNA-29b-3p suppresses oral squamous cell carcinoma cell migration and invasion via IL32/AKT signalling pathway. Journal of Cellular and Molecular Medicine, 24, 841-849.

Hosoya, A., Lee, J. M., Cho, S. W., Kim, J. Y., Shinozaki, N., Shibahara, T. (2008). Morphological evidence of basal keratinocyte migration during the re-epithelialization process. Histochemistry and Cell Biology, 130, 1165-75.

Hwang, S.J. & Shroyer, K.R. (2012). Biomarkers of cervical dysplasia and carcinoma. Journal of Oncology, 2012, 507286.

Ivanovic, R. F., Viana, N. I., Morais, D. R., Silva, I. A., Leite, K. R., Pontes-Junior, J. (2018). miR-29b enhances prostate cancer cell invasion independently of MMP-2 expression. Cancer Cell International, 18, 18.

Körbler, T., Gršković, M., Dominis, M., Antica, M. (2003). A simple method for RNA isolation from formalin-fixed and paraffin-embedded lymphatic tissues. Experimental and Molecular Pathology, 74, 336-40.

Laengsri, V., Kerdpin, U., Plabplueng, C., Treeratanapiboon, L., Nuchnoi, P. (2018). Cervical Cancer Markers: Epigenetics and microRNAs. Lab Medicine, 49, 97-111.

Li, Y., Zhang, Z., Xiao, Z., Lin, Y., Luo, T., Zhou, Q. (2017). Chemotherapy-mediated miR-29b expression inhibits the invasion and angiogenesis of cervical cancer. Oncotarget, 8, 14655-65.

Lianne D’Oleron Lima Vasconcelos. (2015). Análise imuno-histoquímica das metaloproteinases da matriz 2 e 9 nas lesões intraepiteliais e invasivas da cérvice uterina. Dissertação de Mestrado. Universidade Federal de Pernambuco.

Libra, M., Scalisi, A., Vella, N., Clementi, S., Sorio, R., Stivala, F. (2009). Uterine cervical carcinoma: Role of matrix metalloproteinases (review). International Journal of Oncology, 34, 897-903.

Livak, K. J. & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402-8.

Ma, Z. (2012). Total RNA Extraction from Formalin-Fixed, Paraffin-Embedded (FFPE) Blocks. Bio-Protocol, 2, e161.

Mundy-Bosse, B. L., Scoville, S. D., Chen, L., Mcconnell, K., Mao, H.C, Ahmed, E. H. (2016). MicroRNA-29b mediates altered innate immune development in acute leukemia. Journal of Clinical Investigation, 126, 4404-16.

Ngankeu, A., Ranganathan, P., Havelange, V., Nicolet, D., Volinia, S., Powell, B. J. (2018). Discovery and functional implications of a miR-29b-1/miR-29a cluster polymorphism in acute myeloid leukemia. Oncotarget, 9, 4354-65.

Piotr, C. & Nicoletta, S. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate. Analytical Biochemistry, 162, 156-9.

Poudyal, D., Cui, X., Le, P. M., Hofseth, A. B., Windust, A., Nagarkatti, M. (2013). A Key Role of microRNA-29b for the Suppression of Colon Cancer Cell Migration by American Ginseng. PLoS One, 8, e75034.

Qiu, F., Sun, R., Deng, N., Guo, T., Cao, Y., Yu, Y. (2015). MiR-29a/b enhances cell migration and invasion in nasopharyngeal carcinoma progression by regulating SPARC and COL3A1 gene expression. PLoS One, 10, e0120969.

Schmittgen, T. D. & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101-8.

Shinden, Y., Iguchi, T., Akiyoshi, S., Ueo, H., Ueda, M., Hirata, H. (2015). miR-29b is an indicator of prognosis in breast cancer patients. Molecular and Clinical Oncology, 3, 919-23

Sur, S., Steele, R., Shi, X., Ray, R. B. (2019). miRNA-29b Inhibits Prostate Tumor Growth and Induces Apoptosis by Increasing Bim Expression. Cells, 8, 1455.

Wang, H., Guan, X., Tu, Y., Zheng, S., Long, J., Li, S. (2015). MicroRNA-29b attenuates non-small cell lung cancer metastasis by targeting matrix metalloproteinase 2 and PTEN. Journal of Experimental & Clinical Cancer Research, 34, 59.

Wang, H., Wang, T. T., Lv, X. P. (2018). Expression and prognostic value of miRNA-29b in peripheral blood for endometrial cancer. Future Oncology, 14, 1365-76.

World Health Organization.(2014). Comprehensive Cervical Cancer Control: a guide to essencial pratice - Second edition.

Yan, B., Guo, Q., Fu, F. J., Wang, Z., Yin, Z., Wei, Y. B. (2015a). The role of miR-29b in cancer: Regulation, function, and signaling. OncoTargets and Therapy, 8, 539-48.

Yan, B., Guo, Q., Nan, X. X., Wang, Z., Yin, Z., Yi, L.(2015b). Micro-ribonucleic acid 29b inhibits cell proliferation and invasion and enhances cell apoptosis and chemotherapy effects of cisplatin via targeting of DNMT3b and AKT3 in prostate cancer. OncoTargets and Therapy, 8, 557-65.

Yan, M., Yao, C. J., Chow, J. M., Chang, C. L., Hwang, P. A., Chuang, S. E. (2015c). Fucoidan elevates MicroRNA-29b to regulate DNMT3B-MTSS1 axis and inhibit EMT in human hepatocellular carcinoma cells. Marine Drugs, 13, 6099-116.

Zhang, K., Zhang, C., Liu, L., Zhou, J. (2014). A key role of microRNA-29b in suppression of osteosarcoma cell proliferation and migration via modulation of VEGF. International Journal of Clinical Experimental Pathology, 7, 5701-8.

Zur Hausen, H. (2002). Papillomaviruses and cancer: From basic studies to clinical application. Nature Reviews Cancer, 2, 342-50.

Zur Hausen H. (1999). Papillomaviruses in human cancers. Proceedings of the Association American Physicians, 111, 581-7.

Downloads

Publicado

04/09/2021

Como Citar

ALBUQUERQUE, G. S. .; OLIVEIRA, R. S. de . .; SANTOS, J. A. da S. .; AMARAL, M. P. L. do .; SOUZA, J. M. de .; SILVA, B. de O. .; SILVA NETO, J. da C. .; MUNIZ, M. T. C. . Perfil de expressão do microRNA-29b e sua ação sobre a metaloproteinase de matriz 2 (MMP-2) no processo da carcinogênese cervical. Research, Society and Development, [S. l.], v. 10, n. 11, p. e372101119471, 2021. DOI: 10.33448/rsd-v10i11.19471. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19471. Acesso em: 19 maio. 2024.

Edição

Seção

Ciências da Saúde