Alterações leucocitárias em pacientes com COVID-19 observadas em extensão de sangue periférico

Autores

DOI:

https://doi.org/10.33448/rsd-v10i11.19838

Palavras-chave:

Coronavírus; Leucócitos; Hematologia; Infecção por SARS-CoV-2; Contagem de leucócitos.

Resumo

O objetivo do estudo foi verificar as principais alterações na linhagem leucocitária causadas pela infecção pelo SARS-CoV-2, vírus de origem zoonótica responsável pela doença conhecida como COVID-19. O SARS-CoV-2 afeta vários sistemas, incluindo o sistema hematopoiético, o que ocasiona alterações nas linhagens dos leucócitos. Os pacientes infectados pelo vírus SARS-CoV-2 apresentavam alterações numéricas e morfológicas na linhagem de leucócitos, sendo mais significativo a linfopenia e a neutrofilia. Quanto à morfologia, foram observadas várias anomalias. Os linfócitos reativos plasmocitóides e os semelhantes às células de Downey foram observados com frequência. Monócitos displásicos e neutrófilos com hipolobulação, classificados como anomalia Pseudo Pelger-Huet adquirida, também estavam presentes. Essas anormalidades foram correlacionadas com maior chance de admissão na UTI e evolução para óbito. Houve correspondência entre a contagem normal de eosinófilos com a progressão positiva da doença, o que sugere que, a regeneração dos eosinófilos esteja relacionada com a recuperação da doença. Esse conjunto de alterações não foi observado em nenhuma outra pneumonia de origem viral. A contagem diferencial de leucócitos é um exame rápido e de fácil realização, que pode auxiliar a equipe médica na classificação de pacientes graves ou não graves, e fornecer direcionamento da evolução da doença.

Biografia do Autor

Carolina Coradi, Universidade Paranaense

Discente do Curso de Biomedicina da Univesidade Paranaense - UNIPAR - Paraná - Brasil.

Suellen Laís Vicentino Vieira , Universidade Paranaense

Farmacêutica- Bioquímica 

Doutora em Biociências e Fisiopatologia - Universidade Estadual de Maringá - Paraná - Brasil 

Docente da Universidade Parananese - UNIPAR - Paraná - Brasil 

Referências

Ahnach, M., Ousti, F., Nejjari, S., Houssaini, M. S., & Dini, N. (2021). Peripheral Blood Smear Findings in COVID-19. Turkish Journal Of Hematology. 37(4), p. 301-302. http://dx.doi.org/10.4274/tjh.galenos.2020.2020.0262.

Amgalan, A., & Othman, M. (2020). Hemostatic laboratory derangements in COVID-19 with a focus on platelet count. Platelets. 31(6), p. 740-745. http://dx.doi.org/10.1080/09537104.2020.1768523.

Anaurag, A., Jha, P. K., & Kumar, A. (2020). Differential white blood cell count in the COVID-19: a cross-sectional study of 148 patients. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 14(6), p. 2099-2102. http://dx.doi.org/10.1016/j.dsx.2020.10.029.

Asghar, M., Hussain, N., Shoaib, H., Kim, M., & Lynch, T. (2020). Hematological characteristics of patients in coronavirus 19 infection: a systematic review and meta-analysis. Journal Of Community Hospital Internal Medicine Perspectives. 10(6), p. 508-513, 29. http://dx.doi.org/10.1080/20009666.2020.1808360.

Asghar, M. S., Khan, N. A., Kazmi, S. J. H., Ahmed, A., Hassan, M., Jawed, R., Akram, M., Rasheed, U., Memon, G. M., Ahmed, M. U., Tahniyat, U., & Tirmizi, S. B. (2020). Hematological parameters predicting severity and mortality in COVID-19 patients of Pakistan: a retrospective comparative analysis. Journal Of Community Hospital Internal Medicine Perspectives. 10(6), p. 514-520. http://dx.doi.org/10.1080/20009666.2020.1816276.

Berber, I., Casagar, O., Sarici, A., Berber, N. K., Aydogdu, I., Ulutas, O., Yildirim, A., Bag, H. G. G., & Delen, L. A. (2020). Simple peripheral blood smear findings of COVID-19 patients provide information about the severity of the disease and the duration of hospital stay. Mediterranean Journal Of Hematology And Infectious Diseases. 13(1), p. 1-10. http://dx.doi.org/10.4084/mjhid.2021.009.

Blomme, S., Smets, L., Van Ranst, M., Boeckx, N., & Van Laer, C. (2020). The influence of COVID-19 on routine hematological parameters of hospitalized patients. Acta Clinica Belgica. p. 1-6. http://dx.doi.org/10.1080/17843286.2020.1814649.

Borges, L., Pithon-Curi, T. C., Curi, R., & Hatanaka, E. (2020). COVID-19 and Neutrophils: the relationship between hyperinflammation and neutrophil extracellular traps. Mediators Of Inflammation. p. 1-7. http://dx.doi.org/10.1155/2020/8829674.

Cavalcante-Silva, L. H. A., Carvalho, D. C. M., Lima, E. A., Galvão, J. G. F. M., Silva, J. S. F., Sales-Neto, J. M., & Rodrigues-Mascarenhas, S. (2021). Neutrophils and COVID-19: the road so far. International Immunopharmacology. 90, p. 1-7. http://dx.doi.org/10.1016/j.intimp.2020.107233.

Celkan, T. T. (2020). Hemogram bize neler söyler? Türk Pediatri Arşivi. 55(2), p. 103-116. http://dx.doi.org/10.14744/turkpediatriars.2019.76301.

Chan, S. S. W., Christopher, D., Tan, G. B., Chong, V. C. L., Fan, B. E., Lin, C. Y., & Ong, K. H. (2020). Peripheral lymphocyte subset alterations in COVID‐19 patients. International Journal Of Laboratory Hematology. 42(5), p. 199-203. http://dx.doi.org/10.1111/ijlh.13276.

Chen, J., Pan, Y., Li, G., Xu, W., Zhang, L., Yuan, S., Xia, Y., Lu, P., & Zhang, J. (2020). Distinguishing between COVID‐19 and influenza during the early stages by measurement of peripheral blood parameters. Journal Of Medical Virology. 93(2), p. 1029-1037. http://dx.doi.org/10.1002/jmv.26384.

Choi, M., Aiello, E. A., Ennis, I. L., & Villa-Abrille, M. C. (2020). El SRAA y el SARS-CoV-2: el acertijo a resolver. Hipertensión y Riesgo Vascular. 37(4), p. 169-175. http://dx.doi.org/10.1016/j.hipert.2020.05.005.

Chong, V. C. L., Lim, K. G. E., Fan, B. E., Chan, A. S. W., Ong, K. H., & Kuperan P. (2020). Reactive lymphocytes in patients with COVID‐19. British Journal Of Haematology. 189(5), p. 844-844. http://dx.doi.org/10.1111/bjh.16690.

Christensen, B., Favaloro, E. J., Lippi, G., & Van Cott, E. M. (2020). Hematology Laboratory Abnormalities in Patients with Coronavirus Disease 2019 (COVID-19). Seminars In Thrombosis And Hemostasis. 46(07), p. 845-849. http://dx.doi.org/10.1055/s-0040-1715458.

Djangang, N. N., Peluso, L., Talamonti, M., Izzi, A., Gevenois, P. A., Garufi, A., Goffard, J-C., Henrard, S., Severgnini, P., Vincent, J-L., Creteur, J., & Taccone, F. S. (2020). Eosinopenia in COVID-19 Patients: a retrospective analysis. Microorganisms. 8(12), p. 1-12. http://dx.doi.org/10.3390/microorganisms8121929.

Du, Y., Tu, L., Zhu, P., Mu, M., Wang, R., Yang, P., Wang, X., Hu, C., Ping, R., Hu, P., Li, T., Cao, F., Chang, C., Hu, Q., Jin, Y., & Xu, G. (2020). Clinical Features of 85 Fatal Cases of COVID-19 from Wuhan. A Retrospective Observational Study. American Journal Of Respiratory And Critical Care Medicine. 201(11), p. 1372-1379. http://dx.doi.org/10.1164/rccm.202003-0543oc.

Estrela, C. (2018). Metodologia científica: ciência, ensino, pesquisa [recurso eletrônico]. 3 edição. Porto Alegre: Artes médicas. https://viewer.bibliotecaa.binpar.com/.

Falcão, R. P., & Calado, R. T. (2001). Heterogeneidade das células do sangue: órgãos hematopoéticos e linfopoiéticos. In: Hematologia; Fundamentos e práticas. São Paulo: Atheneu, 2001. p. 1043-1053. https://repositorio.usp.br/item/001235332.

Foldes, D., Hinton, R., Arami, S., & Bain, B. (2020). Plasmacytoid lymphocytes in SARS‐CoV ‐2 infection (Covid‐19). American Journal Of Hematology. 95(7), p. 861-862, 28 abr. 2020. http://dx.doi.org/10.1002/ajh.25834.

Gérard, D., Henry, S., & Thomas, B. (2020). SARS‐CoV‐2: a new aetiology for atypical lymphocytes. British Journal Of Haematology. 189(5), p. 845-845. http://dx.doi.org/10.1111/bjh.16730.

Helal, M. A., Shouman, S., Abdelwaly, A., Elmehrath, A. O., Essawy, M., Sayed, S. M., Saleh, A. H., & El-Badri, N. (2020). Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 inOVID-19 associated-lymphopenia. Journal Of Biomolecular Structure And Dynamics. p. 1-11. http://dx.doi.org/10.1080/07391102.2020.1822208.

Jafarzadeh, A., Chauhan, P., Saha, B., Jafarzadeh, S. & Nemati, M. (2020). Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: lessons from sars and mers, and potential therapeutic interventions. Life Sciences. 257, p. 1-16. http://dx.doi.org/10.1016/j.lfs.2020.118102.

Jamal, S. M., Salib, C., Stock, A., & Uriarte-Haparnas, N. I. (2020). Atypical lymphocyte morphology in SARS-CoV-2 infection. Pathology - Research And Practice. 216(9), p. 1-2. http://dx.doi.org/10.1016/j.prp.2020.153063.

Jesenak, M., Banovcin, P., & Diamant, Z. (2020). COVID‐19, chronic inflammatory respiratory diseases and eosinophils—Observations from reported clinical case series. Allergy. 75(7), p. 1819-1822. http://dx.doi.org/10.1111/all.14353.

Kaur, G., Sandeep, FNU., Olayinka, O., & Gupta, G. (2021). Morphologic Changes in Circulating Blood Cells of COVID-19 Patients. Cureus. 13(2), p. 1-8, 18 fev. 2021. http://dx.doi.org/10.7759/cureus.13416.

Ke, Z., Oton, J., Qu, K., Cortese, M., Zila, V., McKeane, L., Nakane, T., Zivanox, J., Neufeldt, C. J., Cerikan, B., Lu, J. M., Peukes, J., Xiong, X., Kräusslich, H. G., Scheres, S. H. W., Bartenschlager, R., & Briggs, J. A. G. (2020). Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 588(7838), p. 498-502. http://dx.doi.org/10.1038/s41586-020-2665-2.

Khalil, O. A. K., & Khalil, S. S. (2020). SARS-CoV-2: taxonomia, origem e constituição. Revista de Medicina. 99(5), p. 473-479. http://dx.doi.org/10.11606/issn.1679-9836.v99i5p473-479.

Khartabil, T. A., Russcher, H., Ven, A., & Rijke, Y. B. (2020). A summary of the diagnostic and prognostic value of hemocytometry markers in COVID-19 patients. Critical Reviews In Clinical Laboratory Sciences. 57(6), p. 415-431. http://dx.doi.org/10.1080/10408363.2020.1774736.

Lee, C-T., Teo, W. Z. Y. (2020). Peripheral Blood Smear Demonstration of Lymphocyte Changes in Severe COVID-19. The American Journal Of Tropical Medicine And Hygiene. 103(4), p. 1350-1351. http://dx.doi.org/10.4269/ajtmh.20-0721.

Li, Q., Xie, Y., Cui, Z., Tang, S., Yuan, B., Huang, H., Hu, Y., Wang, Y., Zhou, M., & Shi, C. (2020). Analysis of Peripheral Blood IL-6 and Leukocyte Characteristics in 364 COVID-19 Patients of Wuhan. Frontiers In Immunology. 11, p. 1-7. http://dx.doi.org/10.3389/fimmu.2020.559716.

Liao, D., Zhou, F., Lou, L., Xu, M., Wang, H., Xia, J., Gao, Y., Cai, L., Wang, Z., Yin, P., Wang, Y., Tang, L., Deng, J., Mei, H., & Hu, Y. (2020). Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. The Lancet Haematology. 7(9), p. 671-678. http://dx.doi.org/10.1016/s2352-3026(20)30217-9.

Liu, F., Xu, A., Zhang, Y., Xuan, W., Yan, T., Pan, K., Yu, W., & Zhang, J. (2020). Patients of COVID-19 may benefit from sustained Lopinavir-combined regimen and the increase of Eosinophil may predict the outcome of COVID-19 progression. International Journal Of Infectious Diseases. 95, p. 183-191. http://dx.doi.org/10.1016/j.ijid.2020.03.013.

Liu, X., Zhang, R., & He, G. (2020). Hematological findings in coronavirus disease 2019: indications of progression of disease. Annals Of Hematology. 99 (7), p. 1421-1428. http://dx.doi.org/10.1007/s00277-020-04103-5.

Lu, G., & Wang, J. (2020). Dynamic changes in routine blood parameters of a severe COVID-19 case. Clinica Chimica Acta, 508, p. 98-102. http://dx.doi.org/10.1016/j.cca.2020.04.034.

Lüke, F., Orsó, E., Kirsten, J., Poeck, H., Grube, M., Wolff, D., Burkhardt, R., Lunz, D., Lubnow, M., Schmidt, B., Hitzenbichler, F., Hanses, F., Salzberger, B., Evert, M., Herr, W., Brochhausen, C., Pukrop, T., Reichle, A., Heudobler, D. (2020). Coronavirus disease 2019 induces multi‐lineage, morphologic changes in peripheral blood cells. Ejhaem, 1(1), p. 376-383. http://dx.doi.org/10.1002/jha2.44.

Mao, J., Dai, R., Du, R-C., Zhu, Y., Shui, L-P., & Luo, X-H. (2021). Hematologic changes predict clinical outcome in recovered patients with COVID-19. Annals Of Hematology. 100(3), p. 675-689. http://dx.doi.org/10.1007/s00277-021-04426-x

Matic, S., Popovic, S., Djurdjevic, P., todorovic, D., Djordjevic, N., Mijailovic, Z., Sazdanovic, P., Milovanovic, D., Zecevic, D. R., Petrovic, M., Sazdanovic, M., Zornic, N., Vukiceic, V., Petrovic, I., Matic, S., Vukicevik, M. K., & Baskic, D. (2020). SARS-CoV-2 infection induces mixed M1/M2 phenotype in circulating monocytes and alterations in both dendritic cell and monocyte subsets. Plos One. 15(12), p. 1-17. http://dx.doi.org/10.1371/journal.pone.0241097.

Meidaninikjeh, S., Sabouni, N., Marzouni, H. Z., Bengar, S., Khalili, A., & Jafari, R. (2021). Monocytes and macrophages in COVID-19: friends and foes. Life Sciences. 269, p. 1-10. http://dx.doi.org/10.1016/j.lfs.2020.119010.

Middleton, E. A., He, X-Y., Denorme, F., Campbell, R. A., Ng, D., Salvatore, S. P., Mostyka, M., Baxter-Stoltzfus, A., Borczuk, A. C., Loda, M., Cody, M. J., Manne, B. K., Portier, I., Harris, E. S., Petrey, A. C., Beswick, E. J., Caulin, A. F., Iovino, A., Abegglen, L. M., …, Yost, C. C. (2020). Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 136(10), p. 1169-1179. http://dx.doi.org/10.1182/blood.2020007008.

Mina, A., Van Besien, K., & Platanias, L. C. (2020). Hematological manifestations of COVID-19. Leukemia & Lymphoma. 61(12), p. 2790-2798. http://dx.doi.org/10.1080/10428194.2020.1788017.

Mitra, A., Dwyre, D. M., Schivo, M., Thompson III, G. R., Cohen, S. H., Ku, N., & Graff, J. P. (2020). Leukoerythroblastic reaction in a patient with COVID ‐19 infection. American Journal Of Hematology. 95(8), p. 999-1000. http://dx.doi.org/10.1002/ajh.25793.

Naoum, F. A., Ruiz, A. L. Z., Martin, F. H. O., Brito, T. H. G., Hassem, V., & Oliveira, M. G. (2020). Diagnostic and prognostic utility of WBC counts and cell population data in patients with COVID‐19. International Journal Of Laboratory Hematology. p. 1-5. http://dx.doi.org/10.1111/ijlh.13395.

National Health Commission & National Administration of Traditional Chinese Medicine. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). Chinese Medical Journal. 133(9), p. 1087-1095, 2020. https://doi.org/10.1097/CM9.0000000000000819.

Nazarullah, A., Liang, C., Villareal, A., Higgins, R. A., & Mais, D. D. (2020). Peripheral Blood Examination Findings in SARS-CoV-2 Infection. American Journal Of Clinical Pathology. 154(3), p. 319-329. http://dx.doi.org/10.1093/ajcp/aqaa108.

Nikitina, E., Larionova, I., Choinzonov, E., & Kzhyshkowska, J. (2018). Monocytes and Macrophages as Viral Targets and Reservoirs. International Journal Of Molecular Sciences. 19(9), p. 1-25. http://dx.doi.org/10.3390/ijms19092821.

OPAS - Organização Pan-Americana da Saúde. OMS afirma que COVID-19 é agora caracterizada como pandemia. 2020. Disponível em: https://www.paho.org/pt/news/11-3-2020-who-characterizes-covid-19-pandemic. Acesso em: 13 abr. 2021.

Parackova, Z., Zentsova, I., Bloomfield, M., Vrabcova, P., Smetanova, J., Klocperk, A., Meseznikov, G., Mendez, L. F. C., Vymazal, T., & Sediva, A. (2020). Disharmonic Inflammatory Signatures in COVID-19: augmented neutrophils but impaired monocytes and dendritic cells responsiveness. Cells. 9(10), p. 1-17. http://dx.doi.org/10.3390/cells9102206.

Pirsalehi, A., Salari, S., Baghestani, A., Sanadgol, G., Shirini, D., Baerz, M. M., Abdi, S., Akbari, M. E., & Bashash, D. (2021). Differential alteration trend of white blood cells (WBCs) and monocytes count in severe and non-severe COVID-19 patients within a 7-day follow-up. Iranian Journal Of Microbiology. 13(1), p. 8-16. http://dx.doi.org/10.18502/ijm.v13i1.5486.

Pozdnyakova, O., Cornnell, N. T., Battinelli, E. M., Connors, J. M., Fell, G., & Kim, A. S. (2020). Clinical Significance of CBC and WBC Morphology in the Diagnosis and Clinical Course of COVID-19 Infection. American Journal Of Clinical Pathology. 155(3), p. 364-375. http://dx.doi.org/10.1093/ajcp/aqaa231.

Rodrigo-Muñoz, J. M., Sastre, B., Cañas, J. A., Gil-Martínez, M., Redondo, N., & del Pozo, V. (2021). Eosinophil Response Against Classical and Emerging Respiratory Viruses: covid-19. Journal Of Investigational Allergology And Clinical Immunology. 31(2), p. 94-107. http://dx.doi.org/10.18176/jiaci.0624.

Rodriguez, L., Pekkarinen, P. T., Lakshmikanth, T., Tan, Z., Consiglio, C. R., Pou, C., Chen, Y., Mugabo, C. H., Nguyen, N. A., Nowlan, K., Strandin, T., Levanov, L., Mikes, J., Wang, J., Kantele, A., Hepojoki, J., Vapalahti, O., Heinonen, J., Kekäläinen, E., & Brodin, P. (2020). Systems-Level Immunomonitoring from Acute to Recovery Phase of Severe COVID-19. Cell Reports Medicine. 1(5), p. 1-12. http://dx.doi.org/10.1016/j.xcrm.2020.100078.

Ropa, J., Cooper, S., Capitano, M. L., Hof, W. V., & Broxmeyer, H. E. (2020). Human Hematopoietic Stem, Progenitor, and Immune Cells Respond Ex Vivo to SARS-CoV-2 Spike Protein. Stem Cell Reviews And Reports. 17(1), p. 253-265. http://dx.doi.org/10.1007/s12015-020-10056-z.

Rosenberg, H. F., & Foster, P. S. (2021). Eosinophils and COVID-19: diagnosis, prognosis, and vaccination strategies. Seminars In Immunopathology. p. 1-10. http://dx.doi.org/10.1007/s00281-021-00850-3.

Sadigh, S., Massoth, L. R., Christensen, B. B., Stefely, J. A., Keefe, J., & Sohani, A. R. (2020). Peripheral blood morphologic findings in patients with COVID‐19. International Journal Of Laboratory Hematology. 42(6), p. 248-25. http://dx.doi.org/10.1111/ijlh.13300.

Salib, C., & Teruya-Feldstein, J. (2020). Hypersegmented granulocytes and COVID-19 infection. Blood. 135(24), p. 2196-2196. http://dx.doi.org/10.1182/blood.2020006483.

Schapkaitz, E., Jager, T., Levy, B. (2020). The characteristic peripheral blood morphological features of hospitalized patients infected with COVID‐19. International Journal Of Laboratory Hematology. 43(3), p. 130-134. http://dx.doi.org/10.1111/ijlh.13417.

Shahri, M. K., Niazkar, H. R., & Rad, F. (2021). COVID‐19 and hematology findings based on the current evidences: a puzzle with many missing pieces. International Journal of Laboratory Hematology. 43(2), p. 160-168. http://dx.doi.org/10.1111/ijlh.13412.

Silva, P. H., Alves, H. B., Comar, S. R., Henneberg, R., Merlin, J. C., & Stinghen, S. T. (2016). Hematologia laboratorial: teoria e procedimentos. Porto Alegre: Artmed, 2016. 434 p. Disponível em: https://viewer.bibliotecaa.binpar.com/. Acesso em: 07 jul. 2021.

Singh, A., Sood, N., Narang, V., & Goyal, A. (2020). Morphology of COVID-19–affected cells in peripheral blood film. Bmj Case Reports. 13(5), p. 1-2. http://dx.doi.org/10.1136/bcr-2020-236117.

Siracusa, M. C., Kim, B. S., Spergel, J. M., & Artis, D. (2013). Basophils and allergic inflammation. Journal Of Allergy And Clinical Immunology. 132(4), p. 789-801. http://dx.doi.org/10.1016/j.jaci.2013.07.046.

Sun, D-W., Zhang, D., Tian, R-H., Li, Y., Wang, Y-S., Cao, J., Tang, Y., Zhang, N., Zan, T., Gao, L., Huang, Y-Z., Cui, C-L., Wang, D-X., Zheng, Y., & Lv, G-Y. (2020). The underlying changes and predicting role of peripheral blood inflammatory cells in severe COVID-19 patients: a sentinel?. Clinica Chimica Acta. 508, p. 122-129. http://dx.doi.org/10.1016/j.cca.2020.05.027.

Sun, S., Cai, X., Wang, H., He, G., Lin, Y., Lu, B., Chen, C., Pan, Y., & Hu, X. (2020). Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clinica Chimica Acta. 507, p. 174-180. http://dx.doi.org/10.1016/j.cca.2020.04.024.

Tan, L., Wang, Q., Zhang, D., Ding, J., Huang, Q., Tang, Y-Q., Wang, Q., & Miao, H. (2020). Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduction And Targeted Therapy. (33). http://dx.doi.org/10.1038/s41392-020-0148-4.

Tan, Y., Zhou, J., Zhou, Q., Hu, L., & Long, Y. (2020). Role of eosinophils in the diagnosis and prognostic evaluation of COVID‐19. Journal Of Medical Virology. 93(2), p. 1105-1110. http://dx.doi.org/10.1002/jmv.26506.

Tanni, F., Akker, E., Zaman, M. M., Figueroa, N., Tharian, B., & Hupart, K. H. (2020). Eosinopenia and COVID-19. Journal Of Osteopathic Medicine. (8), p. 504-508. http://dx.doi.org/10.7556/jaoa.2020.091.

Walls, A. C., Park, Y-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. (2), p. 281-292. http://dx.doi.org/10.1016/j.cell.2020.02.058.

Wang, M-Y., Zhao, R., Gao, L-J., Gao, X-F., Wang, D-P., & Cao, J-M. (2020). SARS-CoV-2: structure, biology, and structure-based therapeutics development. Frontiers In Cellular And Infection Microbiology. 10(1), p. 1-17. http://dx.doi.org/10.3389/fcimb.2020.587269.

Weinberg, S. E., Behdad, A., Ji, P. (2020). Atypical lymphocytes in peripheral blood of patients with COVID‐19. British Journal Of Haematology. 190(1), p. 36-39. http://dx.doi.org/10.1111/bjh.16848.

Wu, Y., Huang, X., Sun, J., Xie, T., Lei, Y., Muhammad, J., Li, X., Zeng, X., Zhou, F., Qin, H., Shao, L., & Zhang, Q. (2020). Clinical Characteristics and Immune Injury Mechanisms in 71 Patients with COVID-19. Msphere. 5(4), p. 1-11. http://dx.doi.org/10.1128/msphere.00362-20.

Xie, G., Ding, F., Han, L., Yin, D., Lu, H., & Zhang, M. (2020). The role of peripheral blood eosinophil counts in COVID‐19 patients. Allergy. 76(2), p. 471-482. http://dx.doi.org/10.1111/all.14465.

Zhang, D., Guo, R., Lei, L., Liu, H., Wang, Y., Wang, Y., Qian, H., Dai, T., Zhang, T., Lai, Y., Wang, J., Liu, Z., Chen, T., He, A., O’Dwyer, M., & Hu, J. (2020). Frontline Science: covid-19 infection induces readily detectable morphologic and inflammation related phenotypic changes in peripheral blood monocytes. Journal Of Leukocyte Biology. 109(1), p. 13-22. http://dx.doi.org/10.1002/jlb.4hi0720-470r.

Zhang, H., Cao, X., Kong, M., Mao, X., Huang, L., He, P., Pan, S., Li, J., & Lu, Z. (2020). Clinical and hematological characteristics of 88 patients with COVID‐19. International Journal Of Laboratory Hematology. 42 (6), p. 780-787. http://dx.doi.org/10.1111/ijlh.13291.

Zingaropoli, M. A., Nijhawan, P., Carraro, A., Pasculli, P., Zuccalà, P., Perri, V., Marocco, R., Kertusha, B., Siccardi, G., Del Borgo, C., Curtolo, A., Ajassa, C., Iannetta, M., Ciardi, M. R., Mastroianni, C. M., & Lichtner, M. (2021). Increased sCD163 and sCD14 Plasmatic Levels and Depletion of Peripheral Blood Pro-Inflammatory Monocytes, Myeloid and Plasmacytoid Dendritic Cells in Patients With Severe COVID-19 Pneumonia. Frontiers In Immunology. 12, p. 1-12. http://dx.doi.org/10.3389/fimmu.2021.627548.

Downloads

Publicado

05/09/2021

Como Citar

CORADI, C.; VIEIRA , S. L. V. . Alterações leucocitárias em pacientes com COVID-19 observadas em extensão de sangue periférico. Research, Society and Development, [S. l.], v. 10, n. 11, p. e400101119838, 2021. DOI: 10.33448/rsd-v10i11.19838. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19838. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências da Saúde