Azitromicina: características e suas indicações clínicas contra infecções bacterianas e virais, incluindo infecções pelo SARS-CoV-2

Autores

DOI:

https://doi.org/10.33448/rsd-v10i12.19864

Palavras-chave:

COVID-19; SARS-CoV-2; Ensaio clínico; Hidroxicloroquina; Azitromicina.

Resumo

Objetivo: realizar uma revisão da literatura para pesquisar as características clínicas da azitromicina, e suas indicações e associações para infecções por SARS-CoV-2. Metodologia: As buscas eletrônicas foram realizadas no PUBMED Central, BVS/ BIREME, Web of Science e The Cochrane Library com o auxílio de palavras-chave. Resultados: A azitromicina é um antibiótico seguro pertencente à classe dos macrolídeos, eficaz para um grande número de infecções, especialmente doenças respiratórias. Parece teratividade viral indireta por ser capaz de alterar o maquinário celular, inclusive as mitocondrias, por alterar o funcionamento normal dos seus ribossomos. Conclusão: É incerto se azitromicina é elegível para o tratamento de infecçõesviraisemgeral e especialmente para COVID-19. Suacombinação com a hidroxicloroquina, entretanto, deve ser maisbempesquisada a fim de responder se pode ser aplicadacomoumaabordagemclínica para essaquestão.

Referências

Amsden G. W (2005). Anti-inflammatory effects of macrolides—An underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J. Antimicrob. Chemother. ;55:10–21. doi: 10.1093/jac/dkh519. [PubMed] [CrossRef] [Google Scholar]

Agrawal, R. K., Penczek, P., Grassucci, R. A. & Frank, J. (1998) Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl Acad. Sci. USA 95, 6134–6138

AmsdenG.W. (2001) Advanced-generation macrolides: Tissue-directed antibiotics. Int. J. Antimicrob. Agents.18:S11–S15. doi: 10.1016/S0924-8579(01)00410-1. [PubMed] [CrossRef] [Google Scholar].

Cloroquinapoderá ser usada em casos graves do coronavírus. Brazil: Ministério da Saúde, May 25, 2020 (https://www.saude.gov.br/noticias/agencia-saude/46601-cloroquina-podera-ser-usada-em-casos-graves-do-coronavirus. opens in new tab).

Čulić O., Eraković V., & Parnham M.J. (2001) Anti-inflammatory effects of macrolide antibiotics. Eur. J. Pharmacol. ;429:209–229. doi: 10.1016/S0014-2999(01)01321-8. [PubMed] [CrossRef] [Google Scholar]

De Lusignan S, Joy M, Sherlock J, et al. (2021) PRINCIPLE trial demonstrates scope for in-pandemic improvement in primary care antibiotic stewardship. medRxiv; published online Feb 4. https://doi.org/10.1101/2021.02.02.21250902 (preprint).

Gabashvili, I. S. et al. (1999) Major rearrangements in the 70S ribosomal 3D structure caused by a conformational switch in 16S ribosomal RNA. EMBO J. 18, 6501–6507.

Gautret P, Lagier J C, Parola P, et al. (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J AntimicrobAgents March 20 (Epub ahead of print).

Gerard Tortora, & Bryan Derrickson. Principles of Anatomy and Physiology, (12th Ed.), John Wiley & Sons, USA, 74-80.

Hand W. L., &Hand D. L. (2001) Characteristics and mechanisms of azithromycin accumulation and efflux in human polymorphonuclear leukocytes. Int. J. Antimicrob. Agents. ;18:419–425. doi: 10.1016/S0924-8579(01)00430-7. [PubMed] [CrossRef] [Google Scholar]

Hecht S. M. (2000) Bleomycin: New perspectives on the mechanism of action. J. Nat. Prod. ;63:158–168. doi: 10.1021/np990549f. [PubMed] [CrossRef] [Google Scholar]

Hernando-SastreV. (2010) Macrolide antibiotics in the treatment of asthma. An update. Allergol. Immunopathol. ;38:92–98. doi: 10.1016/j.aller.2009.12.002. [PubMed] [CrossRef] [Google Scholar]

Hopkin S. (1991) Clinical toleration and safety of azithromycin. Am. J. Med. ;91:40S–45S. doi: 10.1016/0002-9343(91)90401-I. [PubMed] [CrossRef] [Google Scholar]

Kagkelaris K. A., Makri O. E., Georgakopoulos C. D., & Panayiotakopoulos G. D. (2018) An eye for azithromycin: Review of the literature. Ther. Adv. Ophthalmol. ;10:2515841418783622. doi: 10.1177/2515841418783622. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Labro M. T. (1998) Anti-inflammatory activity of macrolides: A new therapeutic potential? J. Antimicrob. Chemother. ;41:37–46. doi: 10.1093/jac/41.suppl_2.37. [PubMed] [CrossRef] [Google Scholar]

Labro M. T. (2004) Macrolide antibiotics: Current and future uses. Expert Opin. Pharmacother;5:541–550. doi: 10.1517/14656566.5.3.541. [PubMed] [CrossRef] [Google Scholar]

Liu J, Cao R, Xu M, et al. (2020) Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov ;6:16-16.

Marjanović N., Bosnar M., Michielin F., Willé D.R., Anić-Milić T., Čulić O., Popović-Grle S., Bogdan M., Parnham M.J., & Eraković Haber V. (2011) Macrolide antibiotics broadly and distinctively inhibit cytokine and chemokine production by COPD sputum cells in vitro. Pharmacol. Res. ;63:389–397. doi: 10.1016/j.phrs.2011.02.001. [PubMed] [CrossRef] [Google Scholar]

McDonald P. J., & Pruul H. (1991) Phagocyte uptake and transport of azithromycin. Eur. J. Clin. Microbiol. Infect. Dis. ;10:828–833. doi: 10.1007/BF01975835. [PubMed] [CrossRef] [Google Scholar]

Matzneller P., Krasniqi S., Kinzig M., Sörgel F., Hüttner S., Lackner E., Müller M., & ZeitlingerM. (2013)Blood, tissue, and intracellular concentrations of azithromycin during and after end of therapy. Antimicrob. Agents Chemother. ;57:1736–1742. doi: 10.1128/AAC.02011-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Min JY, Jang YJ. (2012) Macrolide therapy in respiratory viral infections. Mediators Inflamm; 649570.

Ministério da Saúdedivulgadiretrizes para tratamentomedicamentoso de pacientes. Brazil: Ministério da Saúde, May 20, 2020 (https://www.saude.gov.br/noticias/agencia-saude/46919-ministerio-da-saude-divulga-diretrizes-para-tratamento-medicamentoso-de-pacientes. opens in new tab).

Ogle, J. M. et al. (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902. Insights into the decoding process.

Oliver M E, & Hinks T S C. (2020) Azithromycin in viral infections. Rev Med Virol; published online Sept 23. https://doi.org/10.1002/ rmv.2163.

Omura S., & Shiomi K. (2007) Discovery, chemistry, and chemical biology of microbial products. Pure Appl. Chem;79:581–591. doi: 10.1351/pac200779040581. [CrossRef] [Google Scholar]

Omura S. (2002) Macrolide Antibiotics. Chemistry, Biology and Practice. Academic Press Inc.; San Diego, CA, USA:. [Google Scholar]

Ramakrishnan V.(2014)The ribosome emerges from a black box. Cell.; 159: 979-984.

Perić M., Fajdetić A., Rupčić R., Alihodžić S., Žiher D., BukvićKrajačić M., Smith K. S., Ivezić-Schönfeld Z., Padovan J., & Landek G. (2012) , et al. Antimalarial activity of 9a-N substituted 15-membered azalides with improved in vitro and in vivo activity over azithromycin. J. Med. Chem. ;55:1389–1401. doi: 10.1021/jm201615t. [PubMed] [CrossRef] [Google Scholar]

Piacentini G. L., Peroni D. G., Bodini A., Pigozzi R., Costella S., Loiacono A., & Boner A. L. (2007) Azithromycin reduces bronchial hyperresponsiveness and neutrophilic airway inflammation in asthmatic children: A preliminary report. Allergy Asthma Proc. ;28:194–198. doi: 10.2500/aap.2007.28.2958. [PubMed] [CrossRef] [Google Scholar]

Poschet J, Perkett E, Timmins G, & DereticV. (2020) Azithromycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells. bioRxiv; published online March 31. https://doi.org/ 10.1101/2020.03.29.008631 (preprint).

Ramakrishnan V. (2014) The ribosome emerges from a black box. Cell.; 159: 979-984.

Salimi A., Eybagi S., Seydi E., Naserzadeh P., Kazerouni N. P., & Pourahmad J. (2016) Toxicity of macrolide antibiotics on isolated heart mitochondria: A justification for their cardiotoxic adverse effect. Xenobiotica. ;46:82–93. doi: 10.3109/00498254.2015.1046975. [PubMed] [CrossRef] [Google Scholar]

Sassa K., Mizushima Y., Fujishita T., Oosaki R., & Kobayashi M. (1999) Therapeutic effect of clarithromycin on a transplanted tumor in rats. J. Antimicrob. Chemother. 43:67–72. [PMC free article] [PubMed] [Google Scholar]

Tacar O., Sriamornsak P., & Dass C.R. (2013) Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol;65:157–170. doi: 10.1111/j.2042-7158.2012.01567.x. [PubMed] [CrossRef] [Google Scholar]

Tagaya E, Tamaoki J, & Konno K. (1994) Erythromycin inhibits cholinergic neuro-effector transmission in canine airway smooth muscle. Res Commun Mol PatholPharmacol ;85:181–192.

Touret F, Gilles M, & Barral K, et al. (2020) In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci Rep; 10: 13093.

Vandeputte P., Ferrari S., & Coste A.T. (2012) Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol. doi: 10.1155/2012/713687. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Wolter J., Seeney S., Bell S., Bowler S., Masel P., & McCormack J.(2002) Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax;57:212–216. doi: 10.1136/thorax.57.3.212. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. [https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020]

Downloads

Publicado

24/09/2021

Como Citar

OLIVEIRA, G. H. Q. .; SAMPAIO, G. M. .; SILVA, H. F. .; CRISTOVAM, D. J. A. da S. .; CUNHA, R. S. C. .; MAIA, S. S. .; MELO JÚNIOR, P. .; FONSECA, F. L. de M. A. .; SANTOS NETO, A. P. dos .; ATAÍDE FILHO, A. C. de .; SILVA, L. B. . Azitromicina: características e suas indicações clínicas contra infecções bacterianas e virais, incluindo infecções pelo SARS-CoV-2 . Research, Society and Development, [S. l.], v. 10, n. 12, p. e381101219864, 2021. DOI: 10.33448/rsd-v10i12.19864. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19864. Acesso em: 22 nov. 2024.

Edição

Seção

Ciências da Saúde