Plasma metabolomic response to acute short-term high-intensity exercise in young soccer players
DOI:
https://doi.org/10.33448/rsd-v10i12.20049Palavras-chave:
Metabolismo; Treinamento intervalado de alta intensidade; Atletas; Espectroscopia de ressonância magnética.Resumo
The objective of the present study was to evaluate changes in the metabolomic profile using proton nuclear magnetic resonance in young soccer players after an acute bout of high-intensity exercise. We recruited ten athletes from a first division soccer team. Blood samples were collected at rest and immediately post-test. We observed increased levels with very large effect for lactate (ES = 3.78 [CI95%: 5.04 to 2.20]; p <0.0001) and a very large decrease in N-acetyl glycoproteins (ES = -3.77 [CI95%: -2.19 to -5.03]; p <0.0001). Alanine (ES = 1.19 [CI95%: 2.08 to 0.19]; p = 0.0091) and glutamate (ES = 0.94 [CI95%: 1.82 to –0.02]; p = 0.0044) showed moderate increased levels after exercise test, while pyruvate and acetate showed irrelevant alterations. Decreased levels of lipids were observed in the following chemical shift regions of 0.56 ppm (ES = -1.15 [CI95%: -0.16 to -2.04]; p = 0.0045), 0.72 ppm (ES = -3.3 [CI95%: 0.09 to –1.73]; p = 0.0003) and 2.21 ppm (ES = -1.07 [CI95%: -0.09 to -1.96]; p = 0.0006). These data suggest the participation of different energy transfer pathways, which quite interesting, since the exercise protocol in this study consisted of just 30 seconds of high-intensity effort.
Referências
Almeida, P. A., Fidalgo, T. K., Freitas-Fernandes, L. B., Almeida, F. C., Souza, I. P., & Valente, A. P. (2017). Salivary metabolic profile of children and adolescents after hemodialysis. Metabolomics, 13(11), 1-10. https://doi.org/10.1007/s11306-017-1283-y
Bangsbo, J., Iaia, F. M., & Krustrup, P. (2007). Metabolic response and fatigue in soccer. International journal of sports physiology and performance, 2(2), 111-127. https://doi.org/10.1123/ijspp.2.2.111
Bell, J. D., Brown, J. C., Nicholson, J. K., & Sadler, P. J. (1987). Assignment of resonances for ‘acute-phase’glycoproteins in high resolution proton NMR spectra of human blood plasma. FEBS letters, 215(2), 311-315. https://doi.org/10.1016/0014-5793(87)80168-0
Berton, R., Conceição, M. S., Libardi, C. A., Canevarolo, R. R., Gáspari, A. F., Chacon-Mikahil, M. P. T., & Cavaglieri, C. R. (2017). Metabolic time-course response after resistance exercise: A metabolomics approach. Journal of sports sciences, 35(12), 1211-1218. https://doi.org/10.1080/02640414.2016.1218035
Bishop, D., Girard, O., & Mendez-Villanueva, A. (2011). Repeated-sprint ability—Part II. Sports medicine, 41(9), 741-756. https://doi.org/10.2165/11590560-000000000-00000
Catoire, M., Alex, S., Paraskevopulos, N., Mattijssen, F., Evers-van Gogh, I., Schaart, G., & Kersten, S. (2014). Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise. Proceedings of the National Academy of Sciences, 111(11), E1043-E1052. https://doi.org/10.1073/pnas.1400889111
Dror, N., Oren, L., Pantanowitz, M., Eliakim, A., & Nemet, D. (2017). The Wingate anaerobic test cannot be used for the evaluation of growth hormone secretion in children with short stature. Journal of sport and health science, 6(4), 443-446. https://doi.org/10.1016/j.jshs.2016.06.002
Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical society reviews, 40(1), 387-426. https://doi.org/10.1039/B906712B
Faiss, R., Léger, B., Vesin, J. M., Fournier, P. E., Eggel, Y., Dériaz, O., & Millet, G. P. (2013). Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PloS one, 8(2), e56522. https://doi.org/10.1371/journal.pone.0056522
Felig, P., & Wahren, J. (1971). Amino acid metabolism in exercising man. The Journal of clinical investigation, 50(12), 2703-2714.
Gheni, G., Ogura, M., Iwasaki, M., Yokoi, N., Minami, K., Nakayama, Y., ... & Seino, S. (2014). Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell reports, 9(2), 661-673. https://doi.org/10.1172/JCI106771
Hittel, D. S., Kraus, W. E., Tanner, C. J., Houmard, J. A., & Hoffman, E. P. (2005). Exercise training increases electron and substrate shuttling proteins in muscle of overweight men and women with the metabolic syndrome. Journal of applied physiology, 98(1), 168-179. https://doi.org/10.1152/japplphysiol.00331.2004
Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine+ Science in Sports+ Exercise, 41(1), 3. https://doi.org/10.1249/MSS.0b013e31818cb2784
Horgan, R. P., & Kenny, L. C. (2011). ‘Omic’technologies: genomics, transcriptomics, proteomics and metabolomics. The Obstetrician & Gynaecologist, 13(3), 189-195. https://doi.org/10.1576/toag.13.3.189.27672
Inbar, O., Bar-Or, O., & Skinner, J. The Wingate anaerobic test. Champaign, IL: Human Kinetics, 1996. 16 Tabachnick B, Fidell L. Using multivariate statistics.
Jones, R. M., Cook, C. C., Kilduff, L. P., Milanović, Z., James, N., Sporiš, G., ... & Vučković, G. (2013). Relationship between repeated sprint ability and aerobic capacity in professional soccer players. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/952350
Lakens, D. (2017). Equivalence tests: A practical primer for t tests, correlations, and meta-analyses. Social psychological and personality science, 8(4), 355-362. https://doi.org/10.1177/1948550617697177
Le Moyec, L., Robert, C., Triba, M. N., Billat, V. L., Mata, X., Schibler, L., & Barrey, E. (2014). Protein catabolism and high lipid metabolism associated with long-distance exercise are revealed by plasma NMR metabolomics in endurance horses. Plos one, 9(3), e90730. https://doi.org/10.1371/journal.pone.0090730
Leibowitz, A., Klin, Y., Gruenbaum, B. F., Gruenbaum, S. E., Kuts, R., Dubilet, M., & Zlotnik, A. (2012). Effects of strong physical exercise on blood glutamate and its metabolite 2-ketoglutarate levels in healthy volunteers. Acta Neurobiol Exp, 72(4), 385-396.
Medbø, J. I., & Tabata, I. (1989). Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. Journal of Applied Physiology, 67(5), 1881-1886. https://doi.org/10.1152/jappl.1989.67.5.1881
Mohr, M., Krustrup, P., & Bangsbo, J. (2003). Match performance of high-standard soccer players with special reference to development of fatigue. Journal of sports sciences, 21(7), 519-528. https://doi.org/10.1080/0264041031000071182
Öztürk, M., Özer, K., & Gökçe, E. (1998). Evaluation of blood lactate in young men after wingate anaerobic power test. Eastern Journal of Medicine, 3(1), 13-16.
Pechlivanis, A., Kostidis, S., Saraslanidis, P., Petridou, A., Tsalis, G., Veselkov, K., & Theodoridis, G. A. (2013). 1H NMR study on the short-and long-term impact of two training programs of sprint running on the metabolic fingerprint of human serum. Journal of proteome research, 12(1), 470-480. https://doi.org/10.1021/pr300846x
Seufert, C. D., Graf, M., Janson, G., Kuhn, A., & Söling, H. D. (1974). Formation of free acetate by isolated perfused livers from normal, starved and diabetic rats. Biochemical and biophysical research communications, 57(3), 901-909. https://doi.org/10.1016/0006-291X(74)90631-7
Shimazu, T., Hirschey, M. D., Hua, L., Dittenhafer-Reed, K. E., Schwer, B., Lombard, D. B., & Verdin, E. (2010). SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell metabolism, 12(6), 654-661. https://doi.org/10.1016/j.cmet.2010.11.003
Slaughter, M. H., Lohman, T. G., Boileau, R., Horswill, C. A., Stillman, R. J., Van Loan, M. D., & Bemben, D. A. (1988). Skinfold equations for estimation of body fatness in children and youth. Human biology, 709-723.
Sun, L., Hu, W., Liu, Q., Hao, Q., Sun, B., Zhang, Q., & Yan, X. (2012). Metabonomics reveals plasma metabolic changes and inflammatory marker in polycystic ovary syndrome patients. Journal of proteome research, 11(5), 2937-2946. https://doi.org/10.1021/pr3000317
Suzuki, K., Nakaji, S., Yamada, M., Totsuka, M., Sato, K., & Sugawara, K. (2002). Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exercise immunology review, 8, 6-48.
Szymańska, E., van Dorsten, F. A., Troost, J., Paliukhovich, I., van Velzen, E. J., Hendriks, M. M., & Smilde, A. K. (2012). A lipidomic analysis approach to evaluate the response to cholesterol-lowering food intake. Metabolomics, 8(5), 894-906. https://doi.org/10.1007/s11306-011-0384-2
Turner, A. N., & Stewart, P. F. (2013). Repeat sprint ability. Strength & Conditioning Journal, 35(1), 37-41. https://doi.org/10.1519/SSC.0b013e3182824ea4
Valério, D. F., Berton, R., Conceição, M. S., Canevarolo, R. R., Chacon-Mikahil, M. P. T., Cavaglieri, C. R., & Libardi, C. A. (2018). Early metabolic response after resistance exercise with blood flow restriction in well-trained men: a metabolomics approach. Applied Physiology, Nutrition, and Metabolism, 43(3), 240-246. https://doi.org/10.1139/apnm-2017-0471
van Velzen, E. J., Westerhuis, J. A., van Duynhoven, J. P., van Dorsten, F. A., Hoefsloot, H. C., Jacobs, D. M., & Smilde, A. K. (2008). Multilevel data analysis of a crossover designed human nutritional intervention study. Journal of proteome research, 7(10), 4483-4491. https://doi.org/10.1021/pr800145j
Yamashita, H., Itsuki, A., Kimoto, M., Hiemori, M., & Tsuji, H. (2006). Acetate generation in rat liver mitochondria; acetyl-CoA hydrolase activity is demonstrated by 3-ketoacyl-CoA thiolase. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1761(1), 17-23. https://doi.org/10.1016/j.bbalip.2006.01.001
Yan, B., Wang, G., Lu, H., Huang, X., Liu, Y., Zha, W., & Sun, J. (2009). Metabolomic investigation into variation of endogenous metabolites in professional athletes subject to strength-endurance training. Journal of Applied Physiology, 106(2), 531-538. https://doi.org/10.1152/japplphysiol.90816.2008
Zhang, A. H., Sun, H., Qiu, S., & Wang, X. J. (2013). NMR‐based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis. Magnetic Resonance in Chemistry, 51(9), 549-556. https://doi.org/10.1002/mrc.3985
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Gustavo Casimiro-Lopes; Marcelo Colonna; Gabriel Boaventura; Tatiana K. S. Fidalgo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.